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Abstract

This paper applies the Martingale method proposed by Cox and Huang to find op-
timal wealth and optimal hedging strategies in the Black-Scholes-Vasicek economy.
It starts with a review of the general solution of optimal wealth by the Martingale
method, and then apply it to a power utility function. We investigate optimal hedging
under three benchmark scenarios including a cash, a stock, and an inflation-indexed
bond benchmark. We analyse optimal portfolio choices when inflation-indexed bonds
are traded in complete markets and not traded in incomplete markets. The outcomes
suggest that optimal wealth and hedging highly depend on the volatilities of bench-
marks and the degree of risk aversion of investors.
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Chapter 1

Introduction

Optimal hedging problem studies how agents should allocate wealth among different
financial assets in order to maximise their expected utilities at a given time. Pen-
sion funds routinely adjust asset positions to meet their financial objectives. One
of the common objectives of pension funds is outperforming predetermined bench-
marks. Insurance companies often set up benchmarks to monitor the performance
of pension funds over the life cycle, and optimal asset allocation strategies highly
depend on the characteristics of benchmarks. In general, long-term pension funds
often confront with risks that cannot be traded, such as inflation risks, mortality
risks, etc. Therefore, pension funds ought to take into account these unhedged risks
to determine optimal hedging strategies in incomplete markets.

The classic portfolio optimisation problem was first formulated by Merton (1969),
where he provided explicit solutions of optimal hedging strategies for investors to
maximise their expected utilities. In the financial setting, risk-free money market
accounts have constant interest rates, and risky stocks follow geometric Brownian
motions. Merton (1969) used the dynamic programming approach to transform
the stochastic investment problem into a Hamilton-Jacobi-Bellman (HJB) equation.
After solving the HJB equation, explicit solutions for optimal asset allocation strate-
gies can be obtained. This approach works well for hyperbolic average risk aversion
(HARA) utility where partial differential equations (PDE) are linear. However, nu-
merical solutions are difficult to obtain in the case of non-linear PDEs.

The Martingale method introduced by Harrison & Kreps (1979) is an alterna-
tive approach to find optimal portfolios. Further development of this approach was
achieved by Pliska (1986), Karatzas et al. (1987), and Cox & Huang (1989), where
closed-form solutions of optimal wealth and hedging strategies were derived without
solving PDEs. These papers considered the complete market setting, where a unique
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optimal self-financing strategy exists, and all payoffs of portfolios can be perfectly
replicated. Cox & Huang (1989) used the Lagrangian method to transform a util-
ity optimisation problem with budget constrains into an unconstrained optimisation
problem. Optimal solutions can be obtained after solving the first-order conditions
of the unconstrained optimisation.

In incomplete markets there exist risks that cannot be traded. In this case, the
arbitrage-free condition is not satisfied, and equivalent martingale measures are not
unique. Therefore, fair prices cannot be derived without constructing perfect repli-
cating portfolios. A super-hedging strategy was proposed by El Karoui & Quenez
(1995), Jouini & Kallal (1995), and Karatzas (1997) to determine optimal hedging
from super-hedging prices in incomplete markets. However, the super-hedging strat-
egy often leads to high costs and low opportunity to gain profits. Föllmer & Leukert
(1999) constructed an alternative approach called quantile hedging strategy where
the cost of hedging is minimised, and the probability of a successful hedging strategy
is maximised.

Modern portfolio analysis and asset allocation require specific financial settings.
Merton (1969) derived the optimal solution based on the classic Black-Scholes (1973)
economy where interest rates are assumed to be constant. Many studies extended
the Black-Scholes (1973) model with stochastic interest rates following the Ornstein-
Uhlenbeck process. One of the main types of stochastic short rates is the Vasicek
(1977) model, see Omberg (1999), Brennan & Xia (2002), Eksi (2007), and Angelini
& Herzel (2014). The Black-Scholes-Hull-White economy is another common type
of economic scenario where shorts rates follow the Hull-White (1993) model, and
relevant studies are Renault & Touzi (1996), Biagini et al. (2000), Yang et al. (2010),
and Goutte (2013).

Optimal hedging strategies highly depend on the degree of risk aversion of in-
vestors, and utility functions capture risk preferences. In general, explicit solutions
can be derived under HARA utility. Power utility is a type of HARA with con-
stant relative risk aversion, and Brennan & Xia (2002), Kallsen et al. (2014), and
Adam-Müller (2000) discussed optimal portfolio choices under power utilities. Other
common HARA utility functions for portfolio optimisation are exponential utility
(cf. Mania & Tevzadze (2008), Browne (1995)) and log-utility (cf. Pang (2006),
Matsumoto (2006)). Expected shortfall can also be incorporated in a utility func-
tion. Föllmer & Leukert (2000), Pochart & Bouchaud (2004), and Gabih et al. (2005)
derived optimal hedging strategies where the utility is maximised, and the expected
shortfall is minimised.

This paper focuses on applying the Martingale method proposed by Cox & Huang
(1989) to find optimal wealth and optimal hedging strategies in the Black-Scholes-
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Vasicek economy where the stochastic interest rate follows the Vasicek (1977) model.
It investigates optimal hedging under three benchmark scenarios including a cash,
a stock, and an inflation-indexed bond benchmark. Inflation risk is the non-traded
risk in the financial market. Two cases are discussed when inflation-indexed bonds
are available in complete markets and not available in incomplete markets.

The rest of this paper is structured as follows. Chapter 2 introduces the Black-
Scholes-Vasicek model and the concept of risk-neutral pricing. Chapter 3 explains
the dynamic optimisation problem. We provide a general solution of finding optimal
wealth and optimal hedging strategies by the martingale method, and then apply the
method to a power utility function. In chapter 4, we derive optimal wealth under
a cash, a stock, and an inflation-indexed bond benchmark respectively. Chapter
5 analyses the way to compute optimal hedging strategies in both complete and
incomplete markets, and chapter 6 concludes.
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Chapter 2

Financial Market and Risk Neutral
Valuation

This chapter introduces a financial market model in the Black-Scholes-Vasicek econ-
omy. It explains the concept of no-arbitrage and the risk-neutral valuation approach
to price any asset. Further, it presents the portfolio wealth where we include three
types of assets including stocks, money market accounts, and zero-coupon bonds.

2.1 Black-Scholes-Vasicek Model

In the general Black-Scholes (1973) economy, expected returns and volatilities of
asset price processes are assumed to be time-independent. The Black-Scholes-Vasicek
model is an extension of the Black-Scholes model with a stochastic interest rate that
follows the Vasicek (1977) model.

Define a time T ∈ R+, and a time span [0, T ]. Let us consider a financial market
under a probability space (Ω,F, {Ft}t∈[0,T ],P), where Ω is a sample space, {Ft}t∈[0,T ]

is the filtration, and P is a probability measure. Additionally, let W = {W P
t,S,W

P
t,r} be

two correlated standard Brownian motions defined on this probability space. These
two Brownian motions are the main sources of randomness in the financial market.

The market consists of both risky and riskless assets. Let Bt be the price process
of the risk-free money market account, and St be the process of the stock that is
assumed to be risky. The process Bt and St satisfy the following stochastic differential
equations (SDE):

dBt = rtBtdt, B0 = 0, (2.1.1)
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dSt = (rt + λ)Stdt+ σsStdW
P
t,S, S0 = 1, (2.1.2)

where σs denotes the time-independent volatility of the stock, and rt denotes the
stochastic interest rate. The expected return of Bt at time t is rt. Additionally, the
drift term (rt + λ) of St implies that the stock yields a constant extra return λ on
the top of the expected interest return. The solution of Bt can be derived as follows:

Bt = exp

{∫ t

0

rudu

}
. (2.1.3)

As the dynamic of the stock price process St follows a geometric Brownian motion,
the solution of St is given by

St = exp

{∫ t

0

rudu+

(
λ− 1

2
σ2
s

)
t+ σsW

P
t,S

}
. (2.1.4)

The Vasicek short rate rt incorporates mean reversion, and rt follows the Ornstein-
Uhlenbeck process with the following SDE:

drt = κ(r̄ − rt)dt+ σrdW
P
t,r. (2.1.5)

where r̄ is the reversion level of interest rate in the long run, and κ is the speed
of mean-reversion. In other words, mean-reversion implies that the short rate rt
will be pulled back to the level r̄ at rate κ. Assume that W P

t,S and W P
t,r are two

correlated Brownian motions with a correlation parameter ρ ∈ (−1, 1), and the
following properties

Cov(W P
t,S,W

P
t,r) = ρr,St, (2.1.6)

and
dW P

t,SdW
P
t,r = ρr,Sdt (2.1.7)

holds for t ∈ [0, T ]. In order to demonstrate the correlation explicitly in the interest
rate model (2.1.5), we use the factor model developed by Primbs (2016) to rewrite
the Brownian motion W P

t,r as follows:

dW P
t,r = ρr,SdW

P
t,S +

√
1− ρ2

r,SdW
P
t,⊥, (2.1.8)

where W P
t,⊥ is a new Brownian motion that is independent of W P

t,S, i.e. W P
t,⊥ ⊥⊥ W P

t,S.
The factor model by Primbs (2016) allows us to model a normally distributed variable
as a sum of components of multiple random variables. These components should
also follow normal distributions, and the squared coefficient of each components
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should sum up to one. In our case, three Brownian motions in (2.1.8) are normally
distributed, and the coefficient dW P

t,S and dW P
t,⊥ satisfies

ρ2
r,S +

(√
1− ρ2

r,S

)2

= 1. (2.1.9)

Substitute (2.1.8) into (2.1.5), and we obtain the interest rate process

drt = κ(r̄ − rt)dt+ σr

(
ρr,SdW

P
t,S +

√
1− ρ2

r,SdW
P
t,⊥

)
(2.1.10)

under W P
t,S and W P

t,⊥ instead. The solution of the SDE drt is shown in the following
proposition:

Proposition 1 (Vasicek Short Rate). Given the SDE of the Vasicek short rate in
(2.1.10), its solution is given by

rt = e−κ(t−s)rs + r̄

(
1− e−κ(t−s)

)
+ σre

−κt
∫ t

s

eκudW P
u,r, (2.1.11)

where rt is normally distributed with mean

E[rt] = e−κ(t−s)rs + r̄

(
1− e−κ(t−s)

)
, (2.1.12)

and variance

Var[rt] =
σ2
r

2κ

(
1− e−2κ(t−s)

)
. (2.1.13)

Proof. See Mamon (2004) for the derivation of rt by applying Ito’s Lemma.

Let Xt be the wealth process of a portfolio consisting of stocks St and money mar-
ket accounts Bt. Set up hedging strategies φ = {φt,S, φt,B}. Assume that investors
can invest φt,S and φt,B amount of money in stocks and money market accounts
respectively. If the portfolio satisfies the self-financing condition, then the wealth
process is as follows:

dXt = φt,SdSt + φt,BdBt. (2.1.14)

Equivalently,

Xt = X0 +

∫ t

0

φu,SdSu +

∫ t

0

φu,BdBu, (2.1.15)
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where X0 ∈ R+ is the initial endowment of investors, and the initial value of the
portfolio as well. A self-financing portfolio implies that investors can change their
hedging strategy from φt−∆t to φt without withdrawing or investing additional capital
in the portfolio. The portfolio value Xt at time t is determined by the changes in
both hedging strategies and the value of assets from the initial time 0 to time t.

2.2 Risk Neutral Pricing

Black and Scholes (1973) approached the option pricing model based on arbitrary
free pricing. Asset pricing theory suggests that asset prices can be determined by
discounting the expected value of future asset payoffs. To price an asset, we need to
compute the conditional expectation of asset payoffs with respect to its filtration un-
der a probability measure. In the real world, the real measure is generally unknown,
and the conditional expectation often can not be computed straight forwards under
the real-world measure. However, we can construct a new probability measure that
is equivalent to the original one, and then compute asset prices where discounted
price processes are martingales with conditional expectations equal to one under the
new measure. This motivates the following definition of the equivalent martingale
measure:

Definition 1 (Equivalent Martingale Measure). A probability measure Q is said
be an equivalent martingale measure of another probability measure P if the following
conditions are satisfied:
• Q is equivalent to P (Q ∼ P ).
• The discounted price process is a martingale under the measure Q.

Assume that we are in a risk-neutral world where arbitrage opportunities do
not exist. The absence of arbitrage implies that investors cannot profit from price
differences of assets in different markets. Under the arbitrage-free condition, a risk-
neutral measure must exist, and its existence is guaranteed by the theorem below:

Theorem 2 (First Fundamental Theorem of Asset Pricing). There is no
arbitrary opportunity in a market if and only if there exists at least one risk-neutral
measure.

Now let us introduce a new probability measure Q defined on the same probability
space (Ω,F, {Ft}t∈[0,T ]) as the measure P. The measure Q is the risk-neutral measure
that is equivalent to the original measure P. To find the discount price process, let us
first introduce the notion of normalisation. The financial market can be normalised
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by dividing all asset processes by a numeraire. As the money market account Bt > 0
is strictly positive, we are allowed to choose it as the numeraire. Bt can also be
considered as the unit of a price, and we can compute the relative prices of other
assets with respect to Bt. The discounted price process of the stock is given by

d
St
Bt

= λ
St
Bt

dt+ σs
St
Bt

dW P
t,S (2.2.1)

under the original measure P.
Now we proceed to find the discounted price process (2.2.1) under the risk-neutral

measure Q. Let ζt,S be a Radon–Nikodym exponent, see Halmos et al. (1949). By
Girsanov’s theorem, see Girsanov (1960), the Brownian motion

WQ
t,S = W P

t,S +

∫ t

0

ζu,Sdu (2.2.2)

is a standard Brownian motion under Q. Equivalently,

dWQ
t,S = dW P

t,S + ζt,Sdt. (2.2.3)

Substitute (2.2.3) into (2.2.1), and we obtain the discounted process of the stock

d
St
Bt

=
St
Bt

[(λ− ζt,Sσs)dt+ σsdW
Q
t,S] (2.2.4)

under Q. The discounted price process (2.2.4) is a martingale with a zero-drift term.
Hence, we can rewrite (2.2.4) as follows:

d
St
Bt

=
St
Bt

[σsdW
Q
t,S], (2.2.5)

where the drift term vanished. Additionally, we obtain the Radon–Nikodym expo-
nent as follows:

ζt,S =
λ

σs
. (2.2.6)

Note that ζt,S is time-independent. ζt,S is also known as the market price of risk or
the Sharpe ratio (see Sharpe (1966)), which indicates the extra expected return that
investors would demand in order to bear extra risks in the portfolio. If the market
price of risk ζt,S is large, then investors are willing to invest more capitals in stocks.
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2.3 Pricing Kernel

In the risk-neutral world, there exist at least one stochastic discount factors, which
can be used to discount expected payoffs of assets. Stochastic discount factors are
also known as pricing kernels. Define a pricing kernel Mt satisfying

Mt = exp

{
−
∫ t

0

rudu

}
dQ
dP

, M0 = 1, (2.3.1)

where dQ
dP is the Radon–Nikodym derivative, see Halmos et al. (1949). Under the

original measure, the discounted expected value of a portfolio Xt is equal to its
initial value X0. This can be shown in the following expression:

X0 = EP[MtXt]. (2.3.2)

By the Girsanov theorem, the Radon–Nikodym derivative dQ
dP in the pricing kernel

(2.3.1). can transfer the expectation (2.3.2) from the original measure P to the risk
neutral measure Q as follows:

X0 = EP[MtXt]

= EQ
[
exp

{
−
∫ t

0

rudu

}
Xt

]
= EQ

[
Xt

Bt

]
,

(2.3.3)

where the discounted wealth process Xt
Bt

is a martingale under the measure Q. The
purposes of introducing the pricing kernel Mt are to discount the wealth process, and
to change the process from the measure P to Q.

Now let us examine the Radon–Nikodym derivative dQ
dP in (2.3.1). In section 2.1,

we introduced two correlated Brownian motions W = {W P
t,S,W

P
t,r} in the Black-

Scholes-Vasicek Model. Furthermore, we showed that W P
t,r can be expressed as W P

t,S

and W P
t,⊥ in equation (2.1.8). Thus, we can include the Brownian motion set W =

{W P
t,S,W

P
t,⊥} in the wealth process Xt, instead of the original set W = {W P

t,S,W
P
t,r}.

The Radon–Nikodym derivative changes the wealth process Xt from the measure P
to Q. According to the Radon–Nikodym theorem, it is given by

dQ
dP

∣∣∣∣
Ft

= exp

{
− 1

2

∫ t

0

ζu,S
2du−

∫ t

0

ζu,SdW
P
t,S −

1

2

∫ t

0

ζu,⊥
2du−

∫ t

0

ζu,⊥dW
P
t,⊥

}
,

(2.3.4)
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where ζt,S and ζt,⊥ are the Radon-Nikodym exponents for the measure Q with respect
to P. By the Girsanov theorem, the Brownian motions

dWQ
t,S = ζt,Sdt+ dW P

t,S, (2.3.5)

and
dWQ

t,⊥ = ζt,⊥dt+ dW P
t,⊥ (2.3.6)

are standard Brownian motions under the measure Q.
Insert equation (2.3.4) into (2.3.1), and we can rewrite the pricing kernel as

follows:

Mt

= exp

{
−
∫ t

0

rudu−
1

2

∫ t

0

ζ2
u,Sdu−

∫ t

0

ζu,SdW
P
t,S −

1

2

∫ t

0

ζu,⊥
2du−

∫ t

0

ζu,⊥dW
P
t,⊥

}
.

(2.3.7)

Note that we already computed ζt,S in (2.2.6). Thus, we proceed to compute another
Radon-Nikodym exponent ζt,⊥. The approach to determine ζt,⊥ is using the change
of measure for interest rate process rt. Assume that the interest rate process is

drt = κ(r̄∗ − rt)dt+ σrdW
Q
t,r

= κ(r̄∗ − rt)dt+ σr

(
ρr,SdW

Q
t,S +

√
1− ρ2

r,SdW
Q
t,⊥

)
(2.3.8)

under the measure Q, where r̄∗ is the new short rate parameter. By the change
of measure approach, we can rewrite the interest rate process in (2.1.10) from the
measure P to Q as follows:

drt

= κ(r̄ − rt)dt+ σr

(
ρr,SdW

P
t,S +

√
1− ρ2

r,SdW
P
t,⊥

)
=

[
κ(r̄ − rt)− σr

(
ρr,Sζt,S +

√
1− ρ2

r,Sζt,⊥

)]
dt+ σr

(
ρr,SdW

Q
t,S +

√
1− ρ2

r,SdW
Q
t,⊥

)
.

(2.3.9)

Set the drift terms in (2.3.8) and (2.3.9) to be equal, and it yields

r̄∗ = r̄ −
σr

(
ρr,Sζt,S +

√
1− ρ2

r,Sζt,⊥

)
κ

. (2.3.10)
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As the interest rate process is a martingale under the measure Q, the drift term in
(2.3.9) should vanish. Hence, we obtain the second Radon-Nikodym exponent ζt,⊥
as follows:

ζt,⊥ =
1√

1− ρ2
r,S

(
(r̄∗ − r̄)κ

σr
− ρr,Sλ

σs

)
. (2.3.11)

Notice that both ζt,⊥ (2.3.11) and ζt,S (2.2.6) are time-independent. Thus, we change
the notations of Radon-Nikodym exponents as ζS and ζ⊥ for the remainder of this
paper. Now we can rewrite the pricing kernel in (2.3.7) as follows:

Mt = exp

{
−
∫ t

0

rudu−
1

2
ζ2
St−

1

2
ζ2
⊥t− ζSW P

t,S − ζ⊥W P
t,⊥

}
. (2.3.12)

2.4 Portfolio Wealth and Zero-Coupon Bonds

In section 2.1, we constructed a portfolio consisting of a stock and a money market
account. Now let us introduce a new asset zero-coupon bond in the portfolio Xt. Let
P(t,T ) denote the price of a zero-coupon bond at time t ∈ [0, T ], and the payment
is equal to 1 at the time of maturity T, i.e. P(T,T ) = 1. The price process P(t,T ) is
based on the underlying interest rate process (2.3.8) in the Vasicek model, and the
price process of bonds is given by

P(t,T )

Bt

= EQ
[
P(t,T )

BT

∣∣∣∣Ft

]
= EQ

[
1

BT

∣∣∣∣Ft

]
, (2.4.1)

where
P(t,T )

Bt
is a martingale under Q. Rearrange the above equation, and we obtain

P(t,T ) = EQ
[
Bt

BT

∣∣∣∣Ft

]
= EQ

[
exp

{
−
∫ T

t

rudu

}∣∣∣∣Ft

]
. (2.4.2)

Notice that the price process P(t,T ) is computed as the conditional expectation with
respect to the filtration Ft under the risk-neutral measure Q. Equation (2.4.2)
estimates the future payoffs of the zero-coupon bond, given the information up to
the current time t.

To find the bond price P(t,T ), we first compute the integral term R(t,T ) =
∫ T
t
rudu

in (2.4.2), and its distribution is shown in the following proposition:
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Proposition 3. If the interest rate rt follows the Vasicek model in (2.3.8), then the
random variable R(t,T ) is normally distributed with mean

µR(t,T )
= E

[ ∫ T

t

rudu

∣∣∣∣Ft

]
= r̄∗(T − t) + (rt − r̄∗)K(t,T ), (2.4.3)

and variance

σ2
R(t,T )

= Var

[ ∫ T

t

rudu

∣∣∣∣Ft

]
= −σ

2
r

κ2
(K(t,T ) − T + t)− σ2

r

2κ
K2

(t,T ), (2.4.4)

where

K(t,T ) =
1− e−κ(T−t)

κ
. (2.4.5)

Proof. See Privault (2013) and Dana & Jeanblanc (2007) for the derivation of the

distribution of
∫ T
t
rudu.

Now we know the distribution of the integral term
∫ T
t
rudu in proposition 3, and

then we can obtain the price of zero-coupon bonds. The bond price is shown in the
following proposition:

Proposition 4. Let T be the time of maturity of a zero-coupon bond. If the interest
rate rt follows the Vasicek short rate model, then the price of a zero-coupon bond
P(t,T ) at time t ∈ [0, T ] has the following form:

P(t,T ) = A(t,T )e
−rtK(t,T ) , (2.4.6)

where

A(t,T ) = exp

{(
r̄∗ − σ2

r

2κ2

)
(K(t,T ) − T + t)− σ2

r

4κ
K2

(t,T )

}
. (2.4.7)

Additionally, the dynamics of the zero-coupon bond is given by

dP(t,T ) = rtP(t,T )dt− σrK(t,T )P(t,T )dW
Q
t,r (2.4.8)

under the risk-neutral measure Q.

Proof. See Mamon (2004) and Privault (2013) for the derivation of zero-coupon
bonds.
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Given the bond price process P(t,T ) in (2.4.8), we divide the process by the nu-
meraire Bt. Then, we obtain

d
P(t,T )

Bt

= −σrK(t,T )

P(t,T )

Bt

dWQ
t,r

= −σrK(t,T )

(
ρr,S

P(t,T )

Bt

dWQ
t,S +

√
1− ρ2

r,S

P(t,T )

Bt

dWQ
t,⊥

)
,

(2.4.9)

where
P(t,T )

Bt
is a martingale with a zero-drift term under the risk-neutral measure Q.

After including a zero-coupon bond in the portfolio, we need to add the bond
price process to the previous wealth process in (2.1.14) and (2.1.15). Let φ =
{φt,S, φt,B, φt,P} be the new set of hedging strategies. Then, we obtain the new
wealth process Xt as follows:

dXt = φt,SdSt + φt,BdBt + φt,PdP(t,T ). (2.4.10)

Equivalently,

Xt = X0 +

∫ t

0

φu,SdSu +

∫ t

0

φu,BdBu +

∫ t

0

φu,PdP(u,T ). (2.4.11)

If we divide the wealth process Xt by the numeraire Bt, then it yields

Xt

Bt

=
X0

B0

+

∫ t

0

φu,Sd
Su
Bu

+

∫ t

0

φu,Pd
P(u,T )

Bu

, (2.4.12)

where Xt
Bt

is a martingale under the measure Q. According to the Martingale rep-

resentation theorem, see Jacka (1992), the martingale Xt
Bt

has a unique representa-
tion in terms of stochastic integral. As we need to find a trading strategy φ =
{φt,S, φt,B, φt,P} that replicates the payoff, the Martingale representation theorem
ensures that the trading strategy exists, and the strategy is unique.
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Chapter 3

Utility Maximisation and the
Martingale Method

In this chapter, we formulate the dynamic optimisation problem where investors
aim to maximise their expected utilities given a benchmark. Then, we explain the
Martingale method to find a general solution of a utility function. Last, we present an
explicit example of applying the Martingale method to compute the optimal wealth
under a power utility.

3.1 Optimisation Problem

The optimal investment problem was first approached by Merton (1969) who solved
the problem using the dynamic programming approach. In this paper, we consider
an alternative approach called the Martingale method which was developed by Cox
& Huang (1989) and Karatzas et al. (1987).

Let U(x) denote the utility function. Consider an agent who invests an initial
capital X0 ∈ R+ in a portfolio, and he aims to maximise his expected utility by
choosing dynamic hedging strategies at the terminal time T. In this paper, we ex-
tend the general utility maximisation problem introduced by Merton (1969) with a
benchmark YT ∈ R+. The purpose of setting up a benchmark is to measure the
performance of the portfolio. The benchmark indicates the minimum value of the
portfolio wealth that the agent intends to achieve. The utility function U(XT , YT )
has two variables including the portfolio wealth XT and the benchmark YT . The
dynamic optimisation problem can be stated as follows:

max
XT

E[U(XT , YT )]. (3.1.1)
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Note that the utility of the agent should be diminishing. Thus, we assume that the
utility function should satisfy the conditions stated in the following assumption:

Assumption 5. The utility function U(XT , YT ) satisfies Inada conditions with re-
spect to XT for any value of YT :
• U

′
XT

(0, YT ) =∆ lim
XT ↓0

U
′
XT

(XT , YT ) =∞

• U
′
XT

(∞, YT ) =∆ lim
XT→∞

U
′
XT

(XT , YT ) = 0

The above assumption ensures that the utility function U(XT , YT ) is continuous,
monotonically increasing, and strictly concave.

3.2 The Martingale Method

Let us now process to use the martingale method to solve the optimisation problem
in (3.1.1). In section 2.2, we explained the notion of risk-neutral pricing. Let us first
consider the complete market case, and then extend the method to the incomplete
market. This motivates the following theorem about the market completeness:

Theorem 6 (Second Fundamental Theorem of Asset Pricing). The market
is complete if and only if there exists a unique equivalent martingale measure. Oth-
erwise, the market is said to be incomplete.

In the complete market, there is a unique risk-neutral measure Q such that the
discounted wealth process is a martingale. Because of the arbitrage-free condition in
the complete market, the law of one price is satisfied. In other words, all assets with
the same payoffs have a unique price. These assets can perfectly replicate the payoffs
of the portfolio. Under the measure Q, the portfolio wealth XT has a unique price.
We can set up a budge constrain such that the expectation of discounted portfolio
wealth at time T is equal to the initial value of the portfolio X0. Hence, we transfer
the dynamic optimisation problem in (3.1.1) into a static optimisation problem as
follows:

max
XT

E[U(XT , YT )], (3.2.1a)

s.t. E[MTXT ] = X0, (3.2.1b)

where (3.2.1b) is the budge constrain for the agent.
To solve the above optimisation problem, we use the Lagrangian method such that

the optimisation with a constrain in (3.2.1) can be transformed into an unconstrained
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optimisation. Set up the Lagrangian function as follows:

L (XT , η) = E[U(XT , YT )] + η(X0 − E[MTXT ]), (3.2.2)

where η is the Lagrangian multiplier, and X0 = 1. Assume that Lagrange L (XT , η)
is Fréchet-differentiable in infinite-dimensional spaces, see Mathias (1992) or Al-
Mohy & Higham (2009) for the definition of Fréchet derivative. To understand the
intuition of taking the derivative of XT , let us assume that we approximate the
continuous variable XT with a discrete variable in a finite space Rn. Expectation
term E[U(XT , YT )] in (3.2.2) can be interpreted as the summation of the probabilities
of XT in each state of the world times the values of utilities U(XT , YT ). Note that
U(XT , YT ) is a function in Rn for the discrete approximation. In this case, the notion
of taking the derivative of XT can be seen as a normal vector differentiation in Rn.

Take the first-order condition of the Lagrangian function L (XT , η), and then set
the derivative to zero. It yields:

U
′

XT
(XT , YT ) = ηMT . (3.2.3)

Note that (3.2.3) is an identity rather than an equality. The inverse of the utility
in (3.2.3) equals to ηMT in each state of the world. Let I(., YT ) denote an inverse
function with respect to XT . Assume that the utility function in (3.2.3) satisfies
Inada conditions, and U(XT , YT ) with respect to XT is a monotonically increasing
and concave function. Hence, we can solve (3.2.3) with respect to XT , and then
obtain the optimal wealth at time T as follows:

X̂T = I(ηMT , YT ), (3.2.4)

Note that the Lagrangian multiplier η is undetermined in this step. However, we can
compute η by inserting the optimal wealth (3.2.4) into the budget constrain (3.2.1b).
The Lagrangian multiplier η is the solution of

E[MT I(ηMT , YT )] = X0. (3.2.5)

After obtaining the optimal terminal wealth in (3.2.4), we can also compute the
optimal wealth at any arbitrage time t ∈ [0, T ] from the optimal wealth at time T.
Because of the law of one price, the conditional expectation of the discounted wealth
process at time T given the filtration Ft should be equal to the discounted wealth
at time t. That is,

MtX̂t = E
[
MT X̂T

∣∣∣∣Ft

]
, (3.2.6)

19



where Mt is Ft-measurable. Equivalently, we can rewrite the optimal wealth (3.2.6)
at time t as follows:

X̂t = E
[
MT

Mt

X̂T

∣∣∣∣Ft

]
. (3.2.7)

Note that the optimal wealth in (3.2.6) and (3.2.7) is under the original measure
P. According to the Girsanov theorem, the pricing kernel MT can transfer the
expectation in (3.2.6) and (3.2.7) from the original measure P to the risk-neutral
measure Q, and we obtain:

X̂t

Bt

= EQ
[
X̂T

BT

∣∣∣∣Ft

]
, (3.2.8)

where the discounted optimal wealth process X̂t
Bt

is a martingale under Q.

3.3 Power Utility

In section 3.2, we explained the martingale method to solve the utility optimisation
problem. Now let us consider a power utility, and derive the optimal wealth at the
terminal time T and an arbitrage time t. The power utility is given by

U(
XT

YT
) =

(XT
YT

)1−γ − 1

1− γ
, γ 6= 1, (3.3.1)

where the parameter γ > 0 measures the degree of risk-aversion for agents. The
utility function (3.3.1) converges to a logarithmic utility function when γ → 1, i.e. γ
converges to one. The value of the utility function depends on the ratio between the
portfolio wealth and the benchmark. To be more specific, the utility of the agent is
higher when the portfolio outperforms the benchmark.

To verify whether the power utility function satisfies the Inada conditions defined
in Assumption 5, we compute its first and second-order derivative as follows:

U
′

XT
(
XT

YT
) = (

XT

YT
)−γ

1

YT
> 0, (3.3.2)

and

U
′′

XT
(
XT

YT
) = −γ(

XT

YT
)−γ−1 1

Y 2
T

< 0. (3.3.3)

Equation (3.3.2) and (3.3.3) imply that the power utility is strictly increasing and
strictly concave. Thus, the Inada conditions are satisfied.
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Now let us proceed to derive the optimal wealth under the power utility. Based
on the general solution of the optimal wealth in (3.2.4), we compute the inverse
function of the first derivative of the power utility (3.3.2) as follows:

I(U
′

XT
(
XT

YT
), YT ) = YT (XTYT )−

1
γ . (3.3.4)

Insert the inverse function (3.3.4) into the optimal terminal wealth function (3.2.4),
and it yields:

X̂T = I(ηMT , YT ) = (ηMT )−
1
γ Y

1− 1
γ

T , (3.3.5)

where the Lagrangian multiplier η is the solution of the budget constrain

E[I(η̂MT , YT )MT ] = η−
1
γE
[
(MTYT )1− 1

γ

]
= X0. (3.3.6)

Rearrange equation (3.3.6), and we get the Lagrangian multiplier as follows:

η =

(
X0

E[(MTYT )1− 1
γ ]

)−γ
. (3.3.7)

Then, insert the Lagrangian multiplier η that we derived in (3.3.7) into the optimal
wealth (3.3.5) . This yields:

X̂T = (η̂MT )−
1
γ Y

1− 1
γ

T

=
X0

E[(MTYT )1− 1
γ ]
M
− 1
γ

T Y
1− 1

γ

T .
(3.3.8)

Hence, we derived the optimal terminal wealth X̂T in (3.3.8) under the power util-
ity by the martingale method. Notice that the optimal terminal wealth (3.3.8) is
determined by the expectation of the discounted benchmark, the pricing kernel MT ,
and the benchmark itself. For the remainder of this chapter, we will discuss three
concrete examples about the optimal wealth under different benchmarks including a
cash, a stock, and an inflation-indexed bond benchmark.
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Chapter 4

Optimal Portfolio Wealth

In this chapter, we analyse optimal portfolio wealth under the power utility using
the Martingale method. We present three cases by choosing different benchmarks,
including a constant, a stock, and an inflation-indexed bond benchmark. We first
discuss optimal wealth at a terminal time, and then extend the problem to find
optimal wealth at an arbitrage time before the final time.

4.1 Optimal Wealth under a Cash Benchmark

Consider an investor who aims to compare the portfolio wealth with a constant
number. Let YC ∈ R+ denote a constant benchmark. Assume that the initial capital
of the portfolio is 1, i.e. X0 = 1. To obtain the optimal terminal wealth X̂T,C under
the constant benchmark, we substitute the benchmark term YT into (3.3.8) with YC .
This yields:

X̂T,C =
X0

E[(MTYC)1− 1
γ ]
M
− 1
γ

T Y
1− 1

γ

C

=
1

Y
1− 1

γ

C E[M
1− 1

γ

T ]
M
− 1
γ

T Y
1− 1

γ

C

=
M
− 1
γ

T

E[M
1− 1

γ

T ]
.

(4.1.1)

Notice that the term YC vanished in the optimal wealth (4.1.1), which implies that
the constant benchmark does not affect the optimal terminal wealth X̂T,C . The
pricing kernel Mt and its expectation determine the value of the optimal wealth. In
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section 4.3.14, we derived the pricing kernel (2.3.12) to discount the portfolio wealth
in (2.4.10). In this section, the portfolio wealth X̂T,C and the pricing kernel Mt are
still the same as we defined in (2.4.10) and (2.3.12).

To derive the optimal terminal wealth X̂T,C , we compute the pricing kernel Mt

and its expectation respectively. Now let us consider the expectation of the pricing
kernel first. We have

E[M
1− 1

γ

T ]

= E
[
exp

{
−
∫ T

0

rudu−
1

2
ζ2
ST −

1

2
ζ2
⊥T − ζSW P

t,S − ζ⊥W P
t,⊥

}1− 1
γ
]

= exp

{
− 1

2
ζ2
ST −

1

2
ζ2
⊥T

}1− 1
γ

E
[
exp

{
−
∫ T

0

rudu− ζSW P
t,S − ζ⊥W P

t,⊥

}1− 1
γ
]
.

(4.1.2)
Observe that equation (4.1.2) consists of a deterministic term and an expectation
term of an exponential variable. To compute the expectation term in (4.1.2), we
define a random variable J such that

J = −
∫ T

0

rudu− ζSW P
T,S − ζ⊥W P

T,⊥. (4.1.3)

The variable J is normally distributed with mean µJ and variance σ2
J . That is,

J ∼ N (µJ , σ
2
J). (4.1.4)

Then the expectation is the first order of its moment generating function. Thus,

E[eJ ] = exp

{
µJ +

1

2
σ2
J

}
. (4.1.5)

Now let us derive the mean µJ and the variance σ2
J respectively. Note that the

Brownian motion W P
T,S and W P

T,⊥ are normally distributed with mean 0 and variance
1. The expectation of J is computed as follows:

µJ = E
[
−
∫ T

0

rudu− ζSW P
T,S − ζ⊥W P

T,⊥

]
= E

[
−
∫ T

0

rudu

]
= −µR(0,T )

,

(4.1.6)

23



where the distribution of the integral term
∫ T

0
rudu is shown in Proposition 3, and

the expectation µR(0,T )
can be found in (2.4.3). Now we proceed to compute the

variance of J. We have

σ2
J = Var

[
−
∫ T

0

rudu− ζSW P
T,S − ζ⊥W P

T,⊥

]
= Var

[ ∫ T

0

rudu

]
+ Var[ζSW

P
T,S] + Var[ζ⊥W

P
T,⊥] + 2Cov

[ ∫ T

0

rudu, ζSW
P
T,S

]
+ 2Cov

[ ∫ T

0

rudu, ζ⊥W
P
T,⊥

]
+ 2Cov

[
ζSW

P
T,S, ζ⊥W

P
T,⊥

]
,

(4.1.7)

where σ2
J is the sum of variances and covariances between each term in J (4.1.3).

The sum of the variance terms in (4.1.7) is computed as follows:

Var

[ ∫ T

0

rudu

]
+Var[ζSW

P
T,S]+Var[ζ⊥W

P
T,⊥] = σ2

r

∫ T

0

K2
(u,T )du+ζ2

ST +ζ2
⊥T, (4.1.8)

where the variance of the integral
∫ T

0
rudu is shown in (2.4.4). Now we compute the

sum of covariance terms in (4.1.7) as follows:

Cov

[ ∫ T

t

rudu, ζSW
P
T,S

]
= E

[
ζ2
Sσr

∫ T

0

K(u,T )dW
P
u,SW

P
u,r

]
= ζ2

Sρr,Sσr

∫ T

0

K(u,T )du,

(4.1.9)

Cov

[ ∫ T

t

rudu, ζ⊥W
P
T,⊥

]
= ζ2

⊥

√
1− ρ2

r,Sσr

∫ T

0

K(u,T )du, (4.1.10)

and,

Cov

[
ζSW

P
T,S, ζ⊥W

P
T,⊥

]
= 0. (4.1.11)

The Brownian motion W P
T,S and W P

T,⊥ are independent. Hence, the covariance be-
tween these two Brownian motions are 0 in (4.1.11). Inserting the values of the
Radon–Nikodym exponent ζS (2.2.6) and ζ⊥ (2.3.11) into the covariance (4.1.9) and
(4.1.10) respectively, we obtain the sum of these two variances as follow:

Cov

[ ∫ T

t

rudu, ζSW
P
T,S

]
+ Cov

[ ∫ T

t

rudu, ζ⊥W
P
T,⊥

]
= κ(r̄ − r̄∗)σr

∫ T

0

K(u,T )du.

(4.1.12)
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Now Insert all above variance terms and covariance terms into the variance σ2
J in

(4.1.7). This yields:

σ2
J = σ2

r

∫ T

0

K2
(u,T )du+ (ζ2

S + ζ2
⊥)T + 2κ(r̄ − r̄∗)σr

∫ T

0

K(u,T )du. (4.1.13)

Hence, we found the mean (4.1.6) and the variance (4.1.13) of the variable J. Now
we can rewrite the expectation of the pricing kernel (4.1.2) as follows:

E[M
1− 1

γ

T ] = exp

{
− 1

2
ζ2
ST−

1

2
ζ2
⊥T

}1− 1
γ

exp

{(
1− 1

γ

)
µJ+

1

2

(
1− 1

γ

)2

σ2
J

}
. (4.1.14)

Note that the optimal terminal wealth XT,C depends on the pricing kernel MT and
the expectation of the pricing kernel. Therefore, we insert the pricing kernel (2.3.12)
and the expectation (4.1.14) into the optimal wealth in (4.1.1). This yields:

X̂T,C = exp

{
1

2
ζ2
ST +

1

2
ζ2
⊥T +

(
1

γ
− 1

)
µJ

− 1

2

(
1− 1

γ

)2

σ2
J

}
exp

{
1

γ

(∫ T

t

rudu+ ζSW
P
T,S + ζ⊥W

P
T,⊥

)}
.

(4.1.15)

Note that the optimal terminal wealth in (4.1.17) is under the original measure P. By
the change of measure method, we can transfer the optimal wealth from the measure
P to the risk-neutral measure Q. Thus, we change the Brownian motion W P

T,S and
W P
T,⊥ from the measure P to Q according to the Girsanov theorem, and we obtain:

X̂T,C = exp

{(
1

2
− 1

γ

)(
ζ2
ST + ζ2

⊥T

)
+

(
1

γ
− 1

)
µJ

− 1

2

(
1− 1

γ

)2

σ2
J

}
exp

{
1

γ

(∫ T

0

rudu+ ζSW
Q
T,S + ζ⊥W

Q
T,⊥

)}
.

(4.1.16)

To simplify calculations, let LT denote the deterministic term in (4.1.16). Then, we
can rewrite the optimal terminal wealth as follows:

X̂T,C = LT exp

{
1

γ

(∫ T

t

rudu+ ζSW
Q
T,S + ζ⊥W

Q
T,⊥

)}
. (4.1.17)

Hence, we found the optimal terminal wealth X̂T,C under the power utility by ap-
plying the martingale approach explained in section 3.2 and 3.3. However, investors
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also want to maximise the portfolio wealth before the terminal time T. Thus, we
proceed to compute the optimal wealth at an arbitrage time t ∈ [0, T ].

In complete markets, the equivalent martingale measure is unique, and the law
of one price is satisfied. In section 3.2, equation (3.2.8) implies that the conditional

expectation of the discounted wealth process
X̂T,C
BT

at the terminal time T given the

filtration Ft equals to the discounted wealth
X̂t,C
Bt

at any arbitrage time t ∈ [0, T ].
That is,

X̂t,C

Bt

= EQ
[
X̂T,C

BT

∣∣∣∣Ft

]
, (4.1.18)

where
X̂t,C
Bt

and
X̂T,C
BT

are martingales under Q. To derive the discounted wealth
process at time t, we first compute the discounted terminal wealth based on the
optimal wealth in (4.1.17) as follows:

X̂T,C

BT

= LT exp

{(
1

γ
− 1

)∫ T

0

rudu+
1

γ

(
ζSW

Q
T,S + ζ⊥W

Q
T,⊥

)}
. (4.1.19)

Insert (4.1.19) into (4.1.18), and we obtain the optimal wealth at time t as follows:

X̂t

Bt

= LT exp

{(
1

γ
− 1

)∫ t

0

rudu+
1

γ
ζSW

Q
t,S +

1

γ
ζ⊥W

Q
t,⊥

}
EQ
[
exp

{(
1

γ
− 1

)∫ T

t

rudu

+
1

γ
ζS(WQ

T,S −W
Q
t,S) +

1

γ
ζ⊥(WQ

T,⊥ −W
Q
t,⊥)

}∣∣∣∣Ft

]
,

(4.1.20)

where the Brownian motion WQ
t,S and WQ

t,⊥ are Ft-measurable. Hence, we take these
two Brownian motions out of the conditional expectation in (4.1.20). Note that the
Brownian motion WQ

T,S −W
Q
t,S and WQ

T,⊥−W
Q
t,⊥ are normally distributed with mean

0, and variance T − t. That is,

(WQ
T,S −W

Q
t,S)/(WQ

T,⊥ −W
Q
t,⊥) ∼ N (0, T − t). (4.1.21)

To compute the conditional expectation in (4.1.20), let H be a random variable such
that

H =

(
1

γ
− 1

)∫ T

t

rudu+
1

γ
ζS(WQ

T,S −W
Q
t,S) +

1

γ
ζ⊥(WQ

T,⊥ −W
Q
t,⊥). (4.1.22)
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Here we use the same method as in (4.1.5) where we consider the conditional ex-
pectation in (4.1.20) as the first order of moment generating function of H. That
is,

EQ
[
exp

{(
1

γ
− 1

)∫ T

t

rudu+
1

γ
ζS(WQ

T,S −W
Q
t,S) +

1

γ
ζ⊥(WQ

T,⊥ −W
Q
t,⊥)

}∣∣∣∣Ft

]
= exp

{
µH +

1

2
σ2
H

}
,

(4.1.23)
where the expectation of H is

µH =

(
1

γ
− 1

)
µR(0,T )

, (4.1.24)

and the variance of H is

σ2
H =

(
1

γ
−1

)2

σ2
r

∫ T

0

K2
(u,T )du+

1

γ2
(ζ2
S+ζ2

⊥)(T−t)+2

(
1

γ
−1

)
1

γ
κ(r̄ − r̄∗)σr

∫ T

0

K(u,T )du.

(4.1.25)
Here the calculations of µH and σ2

H are similar to the computation of the expectation
and the variance of J in (4.1.6) and (4.1.7). Thus, we present the result above, and
the calculation by steps are not shown. After deriving the conditional expectation
(4.1.23), we can rewrite the optimal wealth (4.1.20) under the cash benchmark at
time t as follows:

X̂t,C

Bt

= LT exp

{
µH +

1

2
σ2
H

}
exp

{(
1

γ
− 1

)∫ t

0

rudu+
1

γ
ζSW

Q
t,S +

1

γ
ζ⊥W

Q
t,⊥

}
= exp

{(
1

2
− 1

γ

)(
ζ2
ST + ζ2

⊥T

)
+

(
1

γ
− 1

)
µJ −

1

2

(
1− 1

γ

)2

σ2
J

+ µH +
1

2
σ2
H

}
exp

{(
1

γ
− 1

)∫ t

0

rudu+
1

γ
ζSW

Q
t,S +

1

γ
ζ⊥W

Q
t,⊥

}
,

(4.1.26)

where the coefficient terms of Brownian motion WQ
t,S and WQ

t,⊥ indicate the amount of
risk that investors want to take for stocks and zero-coupon bonds. Equation (4.1.26)
implies that investors will not invest in stocks if ζS is zero. Similarly, investing in
zero-coupon bonds is not an optimal strategy when ζ⊥ is zero.
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4.2 Optimal Wealth under a Stock Benchmark

In section 4.1, we discussed the optimal wealth under a constant benchmark. In this
section, we choose the stock St as a benchmark, and then find the optimal wealth
X̂T,S under the stock benchmark. Let YT,S be a benchmark following the stock
process St defined in (2.1.4). That is,

YT,S = S0 exp

{∫ T

0

rudu+

(
λ− 1

2
σ2
s

)
T + σsW

P
T,S

}
. (4.2.1)

Based on the general solution of the optimal terminal wealth derived in (3.3.8) under
the power utility, we have

X̂T,S =
(MTYT,S)−

1
γ YT,S

E[(MTYT,S)1− 1
γ ]

=
M
− 1
γ

T Y
1− 1

γ

T,S

E[(MTYT,S)1− 1
γ ]
, (4.2.2)

where X̂T,S is the optimal terminal wealth under the stock benchmark YT,S. Equation

(4.2.2) implies that the value of the optimal terminal wealth X̂T,S depends on three
factors, including the benchmark YT,S, the discounted benchmark process MTYT,S,
and the expectation of the discounted benchmark.

To obtain the optimal terminal wealth, let us first compute the expectation of
the discounted benchmark. We have:

E[(MTYT,S)1− 1
γ ]

= exp

{
− 1

2
ζ2
ST −

1

2
ζ2
⊥T + λT − 1

2
σ2
sT

}1− 1
γ

E
[
exp

{
(−ζS + σs)W

P
T,S − ζ⊥W P

T,⊥

}1− 1
γ
]
,

(4.2.3)

where the pricing kernel is shown in (2.3.12). Note that the Brownian motion W P
T,S

and W P
T,⊥ is not correlated. That is,

Cov

(
(−ζS + σs)W

P
T,S, ζ⊥W

P
T,⊥

)
= 0. (4.2.4)

Similar to the way that we derived the expectation of the pricing kernel consisting
of two Brownian motions in (4.1.2), we consider the term

(−ζS + σs)W
P
T,S − ζ⊥W P

T,⊥ (4.2.5)
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in (4.2.3) as a random variable. Then, the expectation term in (4.2.3) is the first
order of the moment generating function of this random variable. This yields:

E
[
exp

{
(−ζS + σs)W

P
T,S − ζ⊥W P

T,⊥

}1− 1
γ
]

= exp

{
1

2

(
1− 1

γ

)2

[(−ζS + σs)
2 + ζ2

⊥]T

}
.

(4.2.6)
Insert the expectation term (4.2.6) into the expectation of the discounted benchmark
MTYT,S in (4.2.3), and we obtain:

E[(MTYT,S)1− 1
γ ]

= exp

{
− 1

2
ζ2
ST −

1

2
ζ2
⊥T + λT − 1

2
σ2
sT

}1− 1
γ

exp

{
1

2

(
1− 1

γ

)2

[(−ζS + σs)
2 + ζ2

⊥]T

}
.

(4.2.7)

To obtain the optimal terminal wealth, we insert the benchmark (4.2.1), the pricing
kernel (2.3.12), and the expectation of the discounted benchmark (4.2.7) into the
optimal wealth X̂T,S in (4.2.2). This yields:

X̂T,S = exp

{
1

2
ζ2
ST +

1

2
ζ2
⊥T −

1

2

(
1− 1

γ

)2

[(−ζS + σs)
2 + ζ2

⊥]T

}
exp

{∫ T

0

rudu

+

(
1

γ
ζS +

(
1− 1

γ

)
σs

)
W P
T,S +

1

γ
ζ⊥W

P
T,⊥

}
,

(4.2.8)

where X̂T,S is the optimal terminal wealth under the original measure P. By the
Girsanov theorem, we can change the Brownian motions in (4.2.8) from P to Q.
Thus, we obtain the optimal terminal wealth X̂T,S under the risk-neutral measure Q
as follows:

X̂T,S

= exp

{(
1

2
− 1

γ

)(
ζ2
S + ζ2

⊥

)
T − 1

2

(
1− 1

γ

)2

[(−ζS + σs)
2 + ζ2

⊥]T

+

(
1− 1

γ

)
σsζST

}
exp

{∫ T

0

rudu+

(
1

γ
ζS +

(
1− 1

γ

)
σs

)
WQ
T,S +

1

γ
ζ⊥W

Q
T,⊥

}
.

(4.2.9)

To simplify calculations, let CT denote the deterministic term in (4.2.9). Then, we
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can rewrite the optimal terminal wealth X̂T,S as follows:

X̂T,S = CT exp

{∫ T

0

rudu+

(
1

γ
ζS +

(
1− 1

γ

)
σs

)
WQ
T,S +

1

γ
ζ⊥W

Q
T,⊥

}
. (4.2.10)

After obtaining the optimal terminal wealth (4.2.10) under the stock benchmark by
the martingale method, we proceed to compute the optimal wealth at an arbitrage
time t.

Similar to the method used to derive the optimal wealth
X̂t,C
Bt

under the constant

benchmark in (4.1.18), we know that the discounted wealth
X̂t,S
Bt

is equal to the

conditional expectation of the discounted terminal wealth
X̂T,S
BT

under the Q measure.
That is,

X̂t,S

Bt

= EQ
[
X̂T,S

BT

∣∣∣∣Ft

]
, (4.2.11)

where the discounted optimal terminal wealth is

X̂T,S

BT

= CT exp

{(
1

γ
ζS +

(
1− 1

γ

)
σs

)
WQ
T,S +

1

γ
ζ⊥W

Q
T,⊥

}
. (4.2.12)

To derive the optimal wealth
X̂t,S
Bt

, we compute the conditional expectation of
X̂T,S
BT

in (4.2.11) as follows:

X̂t,S

Bt

= CT exp

{(
1

γ
ζS +

(
1− 1

γ

)
σs

)
WQ
t,S +

1

γ
ζ⊥W

Q
t,⊥

}
EQ
[

exp

{(
1

γ
ζS

+

(
1− 1

γ

)
σs

)
(WQ

T,S −W
Q
t,S) +

1

γ
ζ⊥(WQ

T,⊥ −W
Q
t,⊥)

}∣∣∣∣Ft

]
,

(4.2.13)

where WQ
t,S and WQ

t,⊥ are Ft-measurable, which allows us to take these two Brow-
nian motions out of the conditional expectation in (4.2.13). Similar to the way we
computed the conditional expectation in (4.1.5), we consider the term(

1

γ
ζS +

(
1− 1

γ

)
σs

)
(WQ

T,S −W
Q
t,S) +

1

γ
ζ⊥(WQ

T,⊥ −W
Q
t,⊥) (4.2.14)

as a random variable. Then, the conditional expectation in (4.2.13) is the first order
of the moment generating function of the variable (4.2.14). That is,

EQ
[

exp

{(
1

γ
ζS +

(
1− 1

γ

)
σs

)
(WQ

T,S −W
Q
t,S) +

1

γ
ζ⊥(WQ

T,⊥ −W
Q
t,⊥)

}∣∣∣∣Ft

]
= exp

{
1

2

[(
1

γ
ζS +

γ − 1

γ
σs

)2

+
1

γ2
ζ2
⊥

]
(T − t)

}
.

(4.2.15)
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Insert the conditional expectation (4.2.15) into the optimal wealth in (4.2.13), and
we obtain

X̂t,S

Bt

= CT exp

{
1

2

[(
1

γ
ζS +

γ − 1

γ
σs

)2

+
1

γ2
ζ2
⊥

]
(T − t)

}
exp

{(
1

γ
ζS +

γ − 1

γ
σs

)
WQ
t,S +

1

γ
ζ⊥W

Q
t,⊥

}
.

(4.2.16)

Equation (4.2.16) implies that investors will not invest in stocks when the condition

1

γ
ζS +

γ − 1

γ
σs = 0 (4.2.17)

holds. Furthermore, they will not invest in zero-coupon bonds when ζ⊥ is zero. Let
us compare the results of optimal wealth under the cash benchmark (4.1.26) and the
stock benchmark (4.2.16). Observe that the amount of risk that investors willing to
take for zero-coupon bonds are the same as coefficient terms 1

γ
ζ⊥ before Brownian

motion WQ
t,⊥ are equal. Furthermore, investors are willing to bear more risks for

stocks under the stock benchmark than the cash benchmark.

4.3 Incomplete Markets

In previous sections, we discussed the complete market case where the portfolio
contains three different assets including stocks, money market accounts, and zero-
coupon bonds. In incomplete markets, there exist risks that cannot be hedged, such
as mortality risks, inflation risks, etc. Suppose that the market is incomplete now.
According to the Second Fundamental Theorem of Asset Pricing, see Theorem 6,
there exist an infinite number of equivalent martingale measures in incomplete mar-
kets. In this case, pricing kernels and discounted prices under equivalent martingale
measures are also not unique.

Let us now include a new asset inflation-indexed bond It in the portfolio. If we
assume that inflation-indexed bonds are traded in the market, then investors can
extract the unique Radon-Nikodym derivative from the market price of inflation-
indexed bonds, and then obtain the unique pricing kernel to discount the payoff. In
this case, the market becomes complete, and we can still use the Martingale method
to find optimal wealth and optimal hedging strategies.

Chen et al. (2017) proposed a model for inflation-indexed bonds where real in-
terest rates and the expected inflation rates are assumed to be constant. We extend
the Chen et al. (2017) model with a stochastic interest rate rt following the Vasicek
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short rate model introduced in (2.1.5). The dynamics of the inflation-indexed bond
is as follows:

dIt = (rt + µ)Itdt+ σiItdW
P
t,I , (4.3.1)

where µ denotes the expected inflation rate, and σi denotes the volatility of the
inflation-indexed bond. The unhedgeable risk in the incomplete markets is captured
by the Brownian motion W P

t,I . Note that W P
t,I is defined on the same probability

space (Ω,F, {Ft}t∈[0,T ],P) as W P
t,S and W P

t,r. The sum of the real interest rate rt and
the expected inflation rate µ is equal to the nominal interest rate in the market. As
the bond (4.3.1) follows a geometric Brownian motion, the solution of It is given by:

It = I0 exp

{(
µ+

1

2
σ2
i

)
t+

∫ t

0

rudu+ σiW
P
t,I

}
. (4.3.2)

Assume that the Brownian motion W P
t,I and W P

t,r are correlated with the correla-
tion parameter ρr,I ∈ (−1, 1). This implies,

dW P
t,IdW

P
t,r = ρr,Idt. (4.3.3)

Let W P
t,> be a Brownian motion that is independent of W P

t,r, i.e. W P
t,I ⊥⊥ W P

t,>. Hence,
we can use the factor model approach by Primbs (2016) to rewrite the Brownian
motion W P

t,I as follows:

dW P
t,I = ρr,IdW

P
t,r +

√
1− ρ2

r,IdW
P
t,>. (4.3.4)

Note that W P
t,r and W P

t,S are also correlated, and the correlation is shown in (2.1.8).
Substitute the Brownian motion W P

t,r in (4.3.4) with (2.1.8), and we can rewrite the
Brownian motion W P

t,I as a factor model by Primbs (2016) as follows:

dW P
t,I = ρr,I

(
ρr,SdW

P
t,S +

√
1− ρ2

r,SdW
P
t,⊥

)
+
√

1− ρ2
r,IdW

P
t,>, (4.3.5)

where W P
t,I is spanned by three Brownian motions W P

t,S, W P
t,⊥, and W P

t,> that are
independent with each other. Equation (4.3.5) implies that these three independent
Brownian motions are all correlated with W P

t,I . That is,

dW P
t,IdW

P
t,S = ρr,Iρr,Sdt, (4.3.6)

dW P
t,IdW

P
t,⊥ = ρr,I

√
1− ρ2

r,Sdt, (4.3.7)
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and,

dW P
t,IdW

P
t,> =

√
1− ρ2

r,Idt. (4.3.8)

Note that the inflation-indexed bond It is under the original measure P in (4.3.1).
To obtain the bond process under the measure Q, we first divide the process It by
the numeraire Bt. The discounted bond process is as follows:

d
It
Bt

= µ
It
Bt

dt+ σi
It
Bt

dW P
t,I

= µ
It
Bt

dt+ σi

[
ρr,I

(
ρr,S

It
Bt

dW P
t,S +

√
1− ρ2

r,S

It
Bt

dW P
t,⊥

)
+
√

1− ρ2
r,I

It
Bt

dW P
t,>

]
.

(4.3.9)
By the Girsanov theorem, the following property holds:

dWQ
t,> = dW P

t,> + ζt,>dt, (4.3.10)

where ζt,I denotes the Radon-Nikodym exponent. As we include inflation-indexed
bonds in the hedging strategy, the market is complete. Hence, pricing kernels Mt and
the discounted prices MtXt under equivalent martingale measures are still unique.
Here, ζt,I is uniquely defined. By the change of measure, we obtain the discounted
bond process under Q as follows:

d
It
Bt

=
It
Bt

[(
µ− σi

(
ρr,I

[
ρr,SζS +

√
1− ρ2

r,Sζ⊥

]
+
√

1− ρ2
r,Iζ>

))
dt

+ σi

(
ρr,I

[
ρr,SdW

Q
t,S +

√
1− ρ2

r,SdW
Q
t,⊥

]
+
√

1− ρ2
r,IdW

Q
t,>

)]
=

It
Bt

[
σi

(
ρr,I

[
ρr,SdW

Q
t,S +

√
1− ρ2

r,SdW
Q
t,⊥

]
+
√

1− ρ2
r,IdW

Q
t,>

)]
,

(4.3.11)

where It
Bt

is a martingale with a zero-drift term under Q. Equation (4.3.11) implies
that the Radon-Nikodym exponent is as follows:

ζt,> =
1√

1− ρ2
r,I

(
µ

σi
− ρr,I

[
ρr,SζS +

√
1− ρ2

r,Sζ⊥

])
. (4.3.12)

Insert the Radon-Nikodym exponent ζt,⊥ (2.3.11) and ζt,S (2.2.6) into (4.3.13), and
we obtain

ζt,> =
1√

1− ρ2
r,I

(
µ

σi
− ρr,I(r̄

∗ − r̄)κ
σr

)
. (4.3.13)
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Note that ζt,> is time-independent. Thus, we change the notion of the Radon-
Nikodym exponent ζt,I into ζI in the remainder of this paper. Under the original
measure P, the new pricing kernel is given by

MT,I = exp

{
−
∫ T

0

rudu−
1

2
ζ2
ST −

1

2
ζ2
⊥T −

1

2
ζ2
>T − ζSW P

T,S − ζ⊥W P
T,⊥ − ζIW P

T,>

}
,

(4.3.14)
where we include the new Brownian motion W P

T,> in the previous pricing kernel
(2.3.12).

After including the new asset It in the portfolio, we need to extend the wealth
process (2.4.10) with the dynamics of inflation-indexed bonds (4.3.5). Let φ =
{φt,S, φt,B, φt,P , φt,I} be the new set of hedging strategies. Then, we obtain the new
wealth process Xt as follows:

dXt = φt,SdSt + φt,BdBt + φt,PdP(t,T ) + φt,IdIt. (4.3.15)

Equivalently,

Xt = X0 +

∫ t

0

φu,SdSu +

∫ t

0

φu,BdBu +

∫ t

0

φu,PdP(u,T ) +

∫ t

0

φu,IdIu. (4.3.16)

If we divide the wealth process Xt by the numeraire Bt, then we obtain the discounted
wealth process as follows:

Xt

Bt

=
X0

B0

+

∫ t

0

φu,Sd
Su
Bu

+

∫ t

0

φu,Pd
P(u,T )

Bu

+

∫ t

0

φu,Id
Iu
Bu

, (4.3.17)

where Xt
Bt

is a martingale under the measure Q.

4.4 Optimal Wealth under an Inflation-Indexed

Bond Benchmark

In section 4.1 and 4.2, we showed the optimal wealth under a constant and a stock
benchmark respectively. Let us now analyst the optimal wealth when the benchmark
YT,I follows the inflation-indexed bond process in (4.3.2). That is,

YT,I = I0 exp

{(
µ+

1

2
σ2
i

)
T +

∫ T

0

rudu+ σiW
P
T,I

}
. (4.4.1)
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Equivalently,

YT,I = I0 exp

{(
µ+

1

2
σ2
i

)
T +

∫ T

0

rudu

+ σi

(
ρr,I

[
ρr,SdW

P
t,S +

√
1− ρ2

r,SdW
P
t,⊥

]
+
√

1− ρ2
r,IdW

P
t,>

)}
.

(4.4.2)

As we derived the general solution of the optimal terminal wealth in (3.3.8), the
optimal terminal wealth under the benchmark YT,I is as follows:

X̂T,I =
M
− 1
γ

T,I Y
1− 1

γ

T,I

E[(MT,IYT,I)
1− 1

γ ]
, (4.4.3)

where the pricing kernel MT,I is shown in (4.3.14). To derive the optimal terminal

wealth X̂T,I , we first compute the expectation term in (4.4.3) as follows:

E[(MT,IYT,I)
1− 1

γ ]

= exp

{
− 1

2
ζ2
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1

2
ζ2
⊥T −
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2
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E
[
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{
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σiρr,I
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W P
T,>
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γ
]
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(4.4.4)

Let the term

(σiρr,Iρr,S − ζS)W P
T,S

(
σiρr,I

√
1− ρ2

r,S − ζ⊥
)
W P
T,⊥ +

(
σi

√
1− ρ2

r,I − ζ>
)
W P
T,>

(4.4.5)
in (4.4.4) be a random variable. Then, the expectation term in (4.4.4) is the first
order of the moment generating function of this random variable. Hence, we obtain

E
[
exp

{
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T,S +

(
σiρr,I
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)
W P
T,>

}1− 1
γ
]

= exp

{
1

2

(
1− 1

γ

)2[
(σiρr,Iρr,S − ζS)2 +

(
σiρr,I

√
1− ρ2

r,S − ζ⊥
)2

+

(
σi
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T

}
,

(4.4.6)
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where the Brownian motion W P
T,S, W P

T,⊥, and W P
T,> are not correlated. Insert (4.4.6)

into (4.4.4), and we obtain the expectation of discounted benchmark as follows:

E[(MT,IYT,I)
1− 1

γ ]

= exp

{
− 1

2
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2
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)2]

T

}
.

(4.4.7)
Now we insert the benchmark (4.4.2), the pricing kernel (4.3.14), and the expectation
of the discounted benchmark (5.3.3) into the optimal terminal wealth (4.4.3) . Thus,
we obtain the optimal terminal wealth X̂T,I as follows:

X̂T,I = exp

{
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2
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2
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}
.

(4.4.8)

To simplify calculations, let OT denote the deterministic term in (4.4.8). Thus, we
can rewrite the optimal terminal wealth (4.4.8) as follows:

X̂T,I = OT exp

{∫ T

0
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γ
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γ
σi

√
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)
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T,>

}
.

(4.4.9)

Note that the optimal terminal wealth (4.4.9) is under the original measure P. By the
Girsanov theorem, the Brownian motions in (4.4.9) can be changed to the equivalent
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martingale measure Q. Thus, we obtain:

X̂T,I

= OT exp
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1

γ
ζ> +

γ − 1

γ
σi

√
1− ρ2

r,I

)
WQ
T,>

}
,

(4.4.10)

where the optimal terminal wealth (4.4.10) is under the measure Q now. To facilitate
calculations, let O

′
T denote the deterministic term in (4.4.10). That is,

O
′

T = exp

{
1

2
ζ2
ST +

1

2
ζ2
⊥T +

1

2
ζ2
IT +

1

2

(
1− 1

γ

)2[
(σiρr,Iρr,S − ζS)2

+

(
σiρr,I

√
1− ρ2

r,S − ζ⊥
)2

+

(
σi

√
1− ρ2

r,I − ζ>
)2]

T

−
(

1

γ
ζS +

γ − 1

γ
σiρr,Iρr,S

)
ζST −

(
1

γ
ζ⊥ +

γ − 1

γ
σiρr,I

√
1− ρ2

r,S

)
ζ⊥T

−
(

1

γ
ζ> +

γ − 1

γ
σi

√
1− ρ2

r,I

)
ζ>T

}
.

(4.4.11)

Now we can rewrite the optimal terminal wealth in (4.4.10) as follows:

X̂T,I = O
′

T exp

{∫ T

0

rudu+

(
1

γ
ζS +

γ − 1

γ
σiρr,Iρr,S

)
WQ
T,S +

(
1

γ
ζ⊥

+
γ − 1

γ
σiρr,I

√
1− ρ2

r,S

)
WQ
T,⊥ +

(
1

γ
ζ> +

γ − 1

γ
σi

√
1− ρ2

r,I

)
WQ
T,>

}
.

(4.4.12)

As we obtained the optimal terminal wealth (4.4.12) under the inflation-indexed
benchmark YT,I , we now proceed to derive the optimal wealth Xt,I at an arbitrage
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time t. We first compute the discounted optimal wealth as follows:

X̂T,I

BT

= O
′

T exp

{(
1

γ
ζS +

γ − 1

γ
σiρr,Iρr,S

)
WQ
T,S +

(
1

γ
ζ⊥

+
γ − 1

γ
σiρr,I

√
1− ρ2

r,S

)
WQ
T,⊥ +

(
1

γ
ζ> +

γ − 1

γ
σi

√
1− ρ2

r,I

)
WQ
T,>

}
.

(4.4.13)

The discounted wealth
X̂t,I
Bt

at an arbitrage time t equals to the conditional expecta-

tion of the discounted terminal wealth
X̂T,I
BT

given the filtration Ft. That is,

X̂t,I

Bt

= EQ
[
X̂T,I

BT

∣∣∣∣Ft

]
. (4.4.14)

Insert the discounted terminal wealth (4.4.13) into (4.4.14), and we obtain the dis-
counted optimal wealth as follows:

X̂t,I

Bt

= O
′

T exp

{(
1

γ
ζS +

γ − 1

γ
σiρr,Iρr,S

)
WQ
t,S +

(
1

γ
ζ⊥ +

γ − 1

γ
σiρr,I

√
1− ρ2

r,S

)
WQ
t,⊥

+

(
1

γ
ζ> +

γ − 1

γ
σi

√
1− ρ2

r,I

)
WQ
t,>

}
EQ
[

exp

{(
1

γ
ζS

+
γ − 1

γ
σiρr,Iρr,S

)
(WQ

T,S −W
Q
t,S) +

(
1

γ
ζ⊥ +

γ − 1

γ
σiρr,I

√
1− ρ2

r,S

)
(WQ

T,⊥

−WQ
t,⊥) +

(
1

γ
ζ> +

γ − 1

γ
σi

√
1− ρ2

r,I

)
(WQ

T,> −W
Q
t,>)

}∣∣∣∣Ft

]
.

(4.4.15)

Note that the Brownian motion WQ
t,S, WQ

t,⊥, and WQ
t,> are Ft-measurable. Thus, we

can take these Brownian motion out of the conditional expectation in (4.4.15). The
expectation term in (4.4.15) is calculated as follows:

EQ
[

exp

{(
1

γ
ζS +

γ − 1

γ
σiρr,Iρr,S

)
(WQ

T,S −W
Q
t,S) +

(
1

γ
ζ⊥ +

γ − 1

γ
σiρr,I

√
1− ρ2

r,S

)
(WQ

T,⊥ −W
Q
t,⊥) +

(
1

γ
ζ> +

γ − 1

γ
σi

√
1− ρ2

r,I

)
(WQ

T,> −W
Q
t,>)

}∣∣∣∣Ft

]
= exp

{
1

2

[(
1

γ
ζS +

γ − 1

γ
σiρr,Iρr,S

)2

+

(
1

γ
ζ⊥ +

γ − 1

γ
σiρr,I

√
1− ρ2

r,S

)2

+

(
1

γ
ζ> +

γ − 1

γ
σi

√
1− ρ2

r,I

)2]
(T − t)

}
.

(4.4.16)
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Inserting the conditional expectation (4.4.16) into (4.4.15), we obtain:

X̂t,I

Bt

= O
′

T exp

{
1

2

[(
1

γ
ζS +

γ − 1

γ
σiρr,Iρr,S

)2

+

(
1

γ
ζ⊥ +

γ − 1

γ
σiρr,I

√
1− ρ2

r,S

)2

+

(
1

γ
ζ> +

γ − 1

γ
σi

√
1− ρ2

r,I

)2]
(T − t)

}
exp

{(
1

γ
ζS +

γ − 1

γ
σiρr,Iρr,S

)
WQ
t,S

+

(
1

γ
ζ⊥ +

γ − 1

γ
σiρr,I

√
1− ρ2

r,S

)
WQ
t,⊥ +

(
1

γ
ζ> +

γ − 1

γ
σi

√
1− ρ2

r,I

)
WQ
t,>

}
,

(4.4.17)

where the optimal wealth
X̂t,I
Bt

is a martingale under Q. Equation (4.4.17) implies
that if the inequality

ζ> 6= (1− γ)σi

√
1− ρ2

r,I (4.4.18)

holds, i.e. the coefficient term of Brownian motion WQ
t,> is not zero, then inflation-

indexed bonds can be hedged, which ensures that the market is complete. In this
case, the optimal wealth (4.4.17) that we found by using the Martingale method is
indeed the unique optimal wealth. If the condition in (4.4.18) is not satisfied, then
the market is still incomplete, and equivalent martingale measure are not unique. We
will discuss the case about hedging strategies in incomplete markets in the following
chapter.
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Chapter 5

Optimal Hedging Strategies

In the previous chapter, we derived the optimal wealth under three benchmarks.
This chapter presents the way to compute the optimal hedging strategies from the
optimal wealth in both complete and incomplete markets.

5.1 Optimal Hedging under a Cash Benchmark

In section 4.1, we derived the optimal discounted wealth
X̂t,C
Bt

under the cash bench-
mark. This section presents the optimal hedging strategy under the benchmark Yt,C .
In complete markets, the equivalent martingale measure Q is unique. Thus, the op-
timal wealth and optimal hedging strategy are also unique. To obtain the optimal
hedging, we adopt the approach of matching coefficients of the Brownian motions of
the derivative of the optimal wealth.

Let us first compute the derivative of the optimal discounted wealth
X̂t,C
Bt

(4.1.26)
under the measure Q as follows:

d
X̂t,C

Bt

=

[
∂
X̂t,C
Bt

∂t
+ [...]

]
+

1

γ
ζS
X̂t,C

Bt

dWQ
t,S +

1

γ
ζ⊥
X̂t,C

Bt

dWQ
t,⊥.

(5.1.1)

Note that the only factor influencing the optimal hedging strategy is the coefficients
of the Brownian motion dWQ

t,S and dWQ
t,⊥. Hence, it is not necessary to compute the

derivative of drift term of the optimal discounted wealth in (5.1.1).
The portfolio consists of three assets, including stocks, money market accounts,

and zero-coupon bonds. Let φC = {φCt,S, φCt,B, φCu,P} be the set of hedging strategies
under the constant benchmark Yt,C . We defined the discounted wealth in (2.4.12).
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That is,

X̂t,C

Bt

=
X0,C

B0

+

∫ t

0

φCu,Sd
Su
Bu

+

∫ t

0

φCu,Pd
P(u,T )

Bu

, (5.1.2)

where the dynamics of the discounted stock Su
Bu

and the discounted bond
P(u,T )

Bu
under

the risk-neutral measure Q are shown in (2.2.5) and (2.4.9) respectively. Let us now
match the coefficients of the Brownian motion dWQ

t,S between (5.1.1) and (5.1.2). We

know that both the stock process and the bond process contain the Brownian WQ
t,S.

Hence, we obtain:

1

γ
ζS
X̂t,C

Bt

dWQ
t,S = φCt,Sσs

Su
Bu

− φCt,PσrK(t,T )ρr,S
P(u,T )

Bu

dWQ
t,S, (5.1.3)

where the left-hand side (LHS) of equation (5.1.3) is the Brownian motion term dWQ
t,S

in (5.1.1), and the right-hand side (RHS) is the dWQ
t,S term in (5.1.2). Additionally,

let us also match the coefficient of the Brownian motion dWQ
t,⊥. Note that only the

zero-coupon bond process contains the Brownian WQ
t,⊥. Similar to the way we derive

equation (5.1.3), we obtain:

1

γ
ζ⊥
X̂t,C

Bt

dWQ
t,⊥ = −φCt,PσrK(t,T )

√
1− ρ2

r,S

P(u,T )

Bu

dWQ
t,⊥, (5.1.4)

where the LHS and the RHS of (5.1.4) are the dWQ
t,⊥ term in the optimal discounted

wealth process (5.1.1) and (5.1.2) respectively.
Combing equation (5.1.3) and (5.1.4), we obtain an equivalent matrix equation

as follows: [
1
γ
ζS

X̂t,C
Bt

1
γ
ζ⊥

X̂t,C
Bt

]
=

[
σs

St
Bt

−σrK(t,T )ρr,S
P(t,T )

Bt

0 −σrK(t,T )

√
1− ρ2

r,S

P(t,T )

Bt

][
φCt,S
φCt,P

]
. (5.1.5)

Solve the above matrix equation (5.1.5), and it yields:

φCt,S = X̂t,C
1

St

[
1

γ

1

1− ρ2
r,S

(
λ

σ2
s

− (r̄∗ − r̄)κρr,S
σrσs

)]
, (5.1.6)

and,

φCt,P = −X̂t,C
1

P(t,T )

[
1

γ

1

K(t,T )

1

1− ρ2
r,S

(
(r̄∗ − r̄)κ

σ2
r

− ρr,Sλ

σsσr

)]
, (5.1.7)
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where φCt,S (5.1.6) and φCt,P (5.1.7) are optimal hedging for stocks and zero-coupon
bonds under the constant benchmark respectively. After obtaining the hedging strat-
egy φCt,S and φCt,P , investors can invest the remaining capital in the money market
account. That is,

φCt,B = X̂t,C − φCt,SSt − φCu,PP(u,T ). (5.1.8)

Equation (5.1.6) and (5.1.7) imply that the optimal hedging strategy φCt,S and
φCu,P converge to 0 when γ, σr, σs → ∞. This means that investors will only invest
in the money market account if they are extremely risk-averse, or when the stock
and the interest rate are extremely volatile. Observe that the correlation between
stocks and bonds determines whether investor should hold long or short positions in
stocks and bonds. From equation (5.1.6), we know that investor hold a long position
in stocks, and a short position in bonds, i.e. φCt,S > 0 and φCu,P < 0, if the following
condition is satisfied:

ρr,S <
λσr

(r̄∗ − r̄)κσs
. (5.1.9)

Otherwise, investors hold a short position in stocks, and a long position in bonds.

5.2 Optimal hedging under a Stock Benchmark

In section 5.1, we derived the set of optimal hedging strategies under the constant
benchmark. In this section, we use the same method to find the optimal hedging
under the stock benchmark Yt,S.

Similar to the computation of the dynamics of the optimal discounted wealth
X̂t,C
Bt

under the constant benchmark, we first derive the derivative of
X̂t,S
Bt

from the
optimal discounted wealth in (4.2.16) as follows:

d
X̂t,S

Bt

=

[
∂
X̂t,S
Bt

∂t
+ [...]

]
+

(
1

γ
ζS +

γ − 1

γ
σ2
s

)
X̂t,S

Bt

dWQ
t,S +

1

γ
ζ⊥
X̂t,S

Bt

dWQ
t,⊥,

(5.2.1)

where the drift term in (5.2.1) is not computed as we only need to match the co-
efficients of the Brownian motions to obtain the optimal hedging strategies. Let
φS = {φSt,S, φSt,B, φSu,P} denote the set of hedging strategies for stocks, money market

accounts, and zero-coupon bonds respectively. The discounted wealth process
X̂t,S
Bt

under the stock benchmark is the same as the one under the constant benchmark in
(5.1.2). That is,

X̂t,S

Bt

=
X0,S

B0

+

∫ t

0

φSu,Sd
Su
Bu

+

∫ t

0

φSu,Pd
P(u,T )

Bu

. (5.2.2)
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We match the coefficients of the Brownian motion dWQ
t,S in the optimal discounted

wealth in (5.2.1)and (5.2.2). It yields:(
1

γ
ζS +

γ − 1

γ
σ2
s

)
X̂t,S

Bt

dWQ
t,S = φt,Sσs

St
Bt

dWQ
t,S − φt,PσrK(t,T )ρr,S

P(t,T )

Bt

dWQ
t,S,

(5.2.3)

where the LHS and the RHS are the Brownian motion dWQ
t,S term in the optimal

discounted wealth in (5.2.1) and (5.2.2) respectively. Note that dWQ
t,S is contained

in both stock process and the bond process, but dWQ
t,⊥ only appears in the bond

process. Similarly, we match the coefficients of the Brownian motion dWQ
t,⊥ in (5.2.1)

and (5.2.2) as follows:

1

γ
ζ⊥
X̂t,S

Bt

dWQ
t,⊥ = −φt,PσrK(t,T )

√
1− ρ2

r,S

P(t,T )

Bt

dWQ
t,⊥. (5.2.4)

Let us set up a matrix equation by combining equation (5.2.3) and (5.2.4) as
follows:

(
1
γ
ζS + γ−1

γ
σ2
s

)
X̂t,S
Bt

1
γ
ζ⊥

X̂t,S
Bt

 =

[
σsSt −σrK(t,T )ρr,S

P(t,T )

Bt

0 −σrK(t,T )

√
1− ρ2

r,S

P(t,T )

Bt

] [
φSt,S
φSt,P

]
. (5.2.5)

Notice that the RHS of the matrix equation is the same as the one in (5.1.5) as the
portfolio contains the same assets. Solve the above matrix equation (5.2.5), and we
obtain the hedging strategies for stocks and zero-coupon bonds as follows:

φSt,S = X̂t
1

St

[
1

γ

(
λ

σ2
s

− ρr,S
1− ρ2

r,S

(
(r̄∗ − r̄)κ
σrσs

− ρr,Sλ

σ2
s

))
− 1− γ

γ
σs

]
, (5.2.6)

and,

φSt,P = −X̂t
1

P(t,T )

[
1

γ

1

K(t,T )

1

1− ρ2
r,S

(
(r̄∗ − r̄)κ

σ2
r

− ρr,Sλ

σsσr

)]
. (5.2.7)

Additionally, the hedging strategy for the money market account is

φSt,B = X̂t,S − φSt,SSt − φSu,PP(u,T ). (5.2.8)

Equation (5.2.7) indicates that the optimal hedging strategy for stocks φt,S becomes
proportional to the volatility of stocks σs, when investors are extremely risk-averse,
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i.e. γ → ∞. In this case, investors are extremely worried about deviating from
the stock benchmark, so they prefer to perfectly replicate the stock benchmark.
Additionally, φu,P → 0 if γ →∞. In this case, investors will not invest in zero-coupon
bonds, and the hedging strategy φSt,B for money market accounts only depends on
the amount left after investing in the stock market.

5.3 Optimal Hedging under an Inflation-Indexed

Bond Benchmark

In incomplete markets, the prices of any assets are not unique as there exist mul-
tiple equivalent martingale measures. In section 4.4, we included inflation-indexed
bonds in the market, and derived the optimal discounted wealth under the inflation-
indexed bond benchmark by the Martingale method. As inflation-indexed bonds were
included in the hedging strategy, the market is complete. However, when inflation-
indexed bonds can not be hedged, the market remains incomplete. In this case,
optimal hedging strategies are also not unique, and we need to find the worst-case
martingale measure among all equivalent martingale measures. This section analyses
the optimal hedging strategy under the inflation-indexed bond benchmark in both
complete and incomplete markets.

Let us analyse the complete market case first. To obtain the optimal hedging
strategy, we use the same approach as the ones in section 5.1 and 5.2. Let us now
compute the derivative of the optimal discounted wealth under the measure Q as
follows:

d
X̂t,I

Bt

=

[
∂
X̂t,I
Bt

∂t
+ [...]

]
+

(
1

γ
ζS +

γ − 1

γ
σiρr,Iρr,S

)
X̂t,I

Bt

dWQ
t,S +

(
1

γ
ζ⊥ +

γ − 1

γ

σiρr,I

√
1− ρ2

r,S

)
X̂t,I

Bt

dWQ
t,⊥ +

(
1

γ
ζ> +

γ − 1

γ
σi

√
1− ρ2

r,I

)
X̂t,I

Bt

dWQ
t,>.

(5.3.1)

Note that the current portfolio includes an additional asset, the inflation-indexed
bond. As the inflation risk for the inflation-indexed bond is unhedgeable, the market
is incomplete. The discounted wealth process (5.3.1) is under three uncorrelated
Brownian motions, including WQ

t,S, WQ
t,⊥, and WQ

t,>. Let φI = {φIt,S, φIt,B, φIu,P , φIt,I}
denote the set of hedging strategies for stocks, money market accounts, zero-coupon
bonds, and inflation-indexed bonds respectively. We can write the optimal discounted
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wealth as follows:

X̂t,I

Bt

=
X0,I

B0

+

∫ t

0

φIu,Sd
Su
Bu

+

∫ t

0

φIu,Pd
P(u,T )

Bu

+

∫ t

0

φIu,Id
Iu
Bu

, (5.3.2)

where the discounted asset process Su
Bu

,
P(u,T )

Bu
, and Iu

Bu
are martingales under the

measure Q. Let us first match the coefficients of the Brownian motion dWQ
t,S. Note

that dWQ
t,S is contained in the stock process, the zero-coupon bond process, and the

inflation-indexed bond process. Hence, we obtain:(
1

γ
ζS +

γ − 1

γ
σiρr,Iρr,S

)
X̂t,I

Bt

dWQ
t,S

= φIt,Sσs
St
Bt

dWQ
t,S − φ

I
t,PσrK(t,T )ρr,S

P(t,T )

Bt

dWQ
t,S + φIt,Iσiρr,Iρr,S

It
Bt

dWQ
t,S,

(5.3.3)

where the LHS and the RHS of equation (5.3.3) are the dWQ
t,S term in the optimal

discounted wealth process (5.3.1) and (5.3.2) respectively. Similarly, we match the
coefficients of the second Brownian motion WQ

t,⊥. This yields:(
1

γ
ζ⊥ +

γ − 1

γ
σiρr,I

√
1− ρ2

r,S

)
X̂t,I

Bt

dWQ
t,⊥

= −φIt,PσrK(t,T )

√
1− ρ2

r,S

P(t,T )

Bt

dWQ
t,⊥ + φIt,Iρr,I

√
1− ρ2

r,S

It
Bt

dWQ
t,⊥,

(5.3.4)

where the RHS of (5.3.2) implies that WQ
t,⊥ only appears in the zero-coupon bond

process, and the inflation-indexed bond process. Let us now match the coefficients
of the third Brownian motion WQ

t,>, which is only contained in the inflation-indexed
bond process. Hence, we obtain:(

1

γ
ζ> +

γ − 1

γ
σi

√
1− ρ2

r,I

)
X̂t,I

Bt

dWQ
t,> = φIt,Iσi

√
1− ρ2

r,I

It
Bt

dWQ
t,>. (5.3.5)
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Combine equation (5.3.3) and (5.3.5) into an equivalent matrix equation. This yields,
σs

St
Bt

−σrK(t,T )ρr,S
P(t,T )

Bt
σiρr,Iρr,S

It
Bt

0 −σrK(t,T )

√
1− ρ2

r,S

P(t,T )

Bt
σiρr,I

√
1− ρ2

r,S
It
Bt

0 0 σi
√

1− ρ2
r,I

It
Bt


φIt,SφIt,P
φIt,I



=



(
1
γ
ζS + γ−1

γ
σiρr,Iρr,S

)
X̂t,I
Bt(

1
γ
ζ⊥ + γ−1

γ
σiρr,I

√
1− ρ2

r,S

)
X̂t,I
Bt(

1
γ
ζ> + γ−1

γ
σi
√

1− ρ2
r,I

)
X̂t,I
Bt

 .
(5.3.6)

Note that ζ> only depends on the last entry of the above upper triangular system.
Assume that the market is complete, and inflation-indexed bonds are traded in the
market. Note that the equivalent martingale measure is unique in the complete
market, and we derived unique values for market price of risks ζS, ζ⊥, and ζ> in
(2.2.6), (2.3.11), and (4.3.13) respectively. If we solve the matrix equation (5.3.6),
an explicit solution of the hedging strategy φI = {φIt,S, φIu,P , φIt,I} can be found.
Additionally, the hedging strategy for the money market account is as follows:

φIt,B = X̂t,I − φIt,SSt − φIu,PP(u,T ) − φIt,IIt. (5.3.7)

Let us look at the incomplete market case now. As inflation-indexed bonds are
not traded in the incomplete market, the hedging strategy φIt,I for inflation-indexed
bonds should identically be equal to 0. Hence, we obtain the worst-case market price
of risk ζ∗> as follows:

ζ∗> = (1− γ)σi

√
1− ρ2

r,I < 0. (5.3.8)

Notice that we found a negative market price of risk ζ∗> in (5.3.8). As the hedging de-
mand depends positively on the market price of risk, a negative value of ζ∗> indicates
that the corresponding asset category, the inflation-indexed bond, is unattractive for
investors to hedge. In this case, the expected utility will be pulled down because of
the negative market price of risk ζ∗>. Let us now find the hedging strategy in the
incomplete market. In this case, the hedging strategy does not depend on the third
Brownian motion WQ

t,>, and φIt,I is zero. The original upper triangular system (5.3.6)
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can be reduced into a 2 by 2 matrix system as follows:

[
σs

St
Bt

−σrK(t,T )ρr,S
P(t,T )

Bt

0 −σrK(t,T )

√
1− ρ2

r,S

P(t,T )

Bt

][
φIt,S
φIt,P

]
=


(

1
γ
ζS + γ−1

γ
σiρr,Iρr,S

)
X̂t,I
Bt(

1
γ
ζ⊥ + γ−1

γ
σiρr,I

√
1− ρ2

r,S

)
X̂t,I
Bt

 .
(5.3.9)

Solve the above matrix equation (5.3.9), and we obtain the hedging strategies for
stocks and zero-coupon bonds in the incomplete market as follows:

φIt,S = X̂t
1

St

[
1

γ

(
λ

σ2
s

− ρr,S
1− ρ2

r,S

(
(r̄∗ − r̄)κ
σrσs

− ρr,Sλ

σ2
s

))]
, (5.3.10)

and,

φIt,P = −X̂t
1

P(t,T )

1

K(t,T )

[
1

γ

1

1− ρ2
r,S

(
(r̄∗ − r̄)κ

σ2
r

− ρr,Sλ

σsσr

)
+
γ − 1

γ

σi
σr
ρr,I

]
. (5.3.11)

Notice that the hedging strategies for stocks φCt,S (5.1.6) and φIt,S (5.3.10) under
the cash and the inflation-indexed bond benchmark are the same. When γ → ∞,
investors will not invest in the stock market. Furthermore, equation (5.3.11) indicates
that the optimal hedging strategy for zero-coupon bonds φIt,P becomes proportionally
to parameter σr, σi, and ρr,I when investors are extremely risk-averse. To avoid
deviating from the inflation-indexed bond benchmark, investors choose the hedging
strategy depending on the volatility of the real interest rate, the volatility of inflation-
indexed bonds, the correlation parameter.
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Chapter 6

Conclusion

This paper has investigated the Martingale method to find optimal wealth and opti-
mal hedging strategies for investors who aim to maximise their utilities under differ-
ent benchmarks. The basic financial setting is the Black-Scholes-Vasicek economy.
The paper has presented the solution of optimal wealth under a general utility func-
tion by the Martingale method, and then we have applied it to a power utility func-
tion. Furthermore, we have discussed optimal wealth and hedging strategies under
different benchmarks in both complete and incomplete markets.

In the paper, three chosen benchmarks are a cash, a stock, and an inflation-
indexed bond. The equivalent martingale measure is unique in complete markets.
Therefore, the optimal hedging strategies that we have derived under the cash and the
stock benchmark are indeed unique and optimal. We have considered the inflation
risk in incomplete markets. If inflation-indexed bonds are traded in the market,
then investors can obtain a unique pricing kernel to discount asset payoffs. In this
case, the market is still complete, and the optimal hedging is unique. However, if
inflation-indexed bonds can not be traded, we can determine the optimal hedging
under a worst-case martingale measure.

Under the power utility, optimal hedging strategies highly depend on the degree
of risk-aversion of investors. Investors with high-degree risk-aversion will increase
the portfolio weight of risk-free money market accounts. Optimal hedging strategies
are also strongly influenced by the volatility of the benchmark. We have analysed
the situation of extreme risk-aversion. In this case, investors are highly concerned
about deviating the benchmark. Under the constant benchmark, an extremely risk-
averse investor will not invest in stocks and zero-coupon bonds. We have shown that
optimal hedging strategies are proportional to the volatility of stocks under the stock
benchmark, and to the volatility of stocks the volatilities of the real interest rate and
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inflation-indexed bonds.
One of the main limitations of the paper is the simplicity of power utility which

only includes the degree of risk-aversion of investors. Further research can investigate
optimal wealth and hedging under different utility functions and benchmarks.

49



References

Adam-Müller, A. F. (2000). Hedging price risk when real wealth matters. Journal
of International Money and Finance, 19 (4), 549–560.

Al-Mohy, A. H., & Higham, N. J. (2009). Computing the fréchet derivative of the
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