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Chapter 1

Introduction

1.1 General Motivation

Individuals are increasingly responsible for managing health and financial risks in old

age. Due to population aging, public spending on pensions and long-term care (LTC)

is expected to grow in OECD countries from 1.3% and 9.0% of GDP in 2018 to 2.3%

and 10.3% in 2040 (OECD, 2021; de Biase and Dougherty, 2023). Substantial pension

and LTC reforms have taken place to curb the cost. Many countries abolished pathways

to early retirement and increased the statutory retirement age. Also, formal LTC

is becoming less generous, often by encouraging individuals with LTC needs to live

independently for longer in their own homes. For instance, by increasing co-payments

for nursing home care and restricting access to nursing homes in case of lighter LTC

needs. Consequently, the need to financially prepare for old age through self-insurance

(e.g., through private savings or insurance) is expected to increase in the future. Also,

informal care provision by family and relatives is expected to become more important.

When considering reforms of pensions and LTC and individuals’ ability to self-insure

old-age health and financial risks, it is essential to assess heterogeneity in risks and

distributional consequences. It is well known that there is a large socioeconomic gradient

in health and mortality, implying lower socioeconomic status groups to live shorter

and to be unhealthier on average (Smith, 2007; Case and Deaton, 2017; Mackenbach

et al., 2018). Besides, there is wide variation in the use of informal care: in the E.U.

in 2016, 81% of the individuals needing LTC received informal care, whereas 19% did
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2 Chapter 1. Introduction

not receive informal care (European Commision, 2019). The socioeconomic gradient in

health and mortality, and heterogeneity in informal care use may cause redistribution

within pension schemes and public LTC insurance as some households benefit more than

others. In private pension annuity and LTC insurance markets, the heterogeneities can

lead to market inefficiencies as only above-average risks buy insurance.

Consequently, for the design of old-age (social) insurance, we need a good understand-

ing of the heterogeneity and the dynamics of health and financial risks in old age. In this

thesis, we examine mortality and LTC use as two of the most consequential uncertainties

in old age. As an important mechanism to reduce formal LTC use, we consider whether

the availability of informal care, income and savings affect LTC pathways: from no LTC

to home-based care for lighter LTC needs to institutional care for more severe LTC

needs (Chapter 2). We extend existing duration models to be able to estimate these

transitions properly (Chapter 5). Turning to heterogeneities, we study the consequences

of socioeconomic differences in LTC use and mortality for the design of LTC insurances

and pension annuities (Chapter 3). Finally, we assess the consequences of inequalities in

mortality and LTC for saving behavior and welfare of households (Chapter 4).

We analyze these questions in the context of the Netherlands, which provides a

relevant setting for several reasons. First, there exist substantial socioeconomic dif-

ferences in health and mortality (European Commision, 2021). Second, uncertainty

related to pensions and LTC is limited (OECD, 2023; Bakx et al., 2023). Universal

and comprehensive public LTC and generous pensions make precautionary saving for

pension and health expenditures less relevant, as opposed to, e.g., the U.S, where it

is indispensable to consider precautionary saving when studying health and financial

risks in old age. Third, Statistics Netherlands (CBS) provides unique high-frequency

administrative data on LTC use and mortality that can be linked on the individual

and household level to tax and municipality registers containing socioeconomic and

sociodemographic characteristics.

We now proceed with introducing each chapter of the thesis.
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1.2. Motivation and Research Questions per Chapter 3

1.2 Motivation and Research Questions per Chapter

Insight into transitions across LTC arrangements (no LTC use, home-based care, and

institutional care) is key for policy-makers aiming to reduce costly institutional care.

Postponing entry into an institution may involve different policies and LTC needs than

fostering a return from an institution to the home environment. Furthermore, the

availability of informal care can vary across LTC arrangements and over time. With

this in mind, Chapter 2 addresses the research questions:

2a. What is the duration of LTC use and the transition probability by type of LTC

arrangement?

2b. What is the effect of disability type, availability of informal care, and economic

resources on the transition probability across LTC arrangements?

In private insurance markets, the heterogeneity in risks contributes to a tendency

to underinsure longevity risk and the risk of needing LTC, often referred to as the

annuity puzzle and LTC insurance puzzle (for a review, see Lambregts and Schut,

2020). Adverse selection is one explanation for the limited market sizes, arising when

those with above-average life expectancy more often buy annuities, and those with

high expected LTC needs more often buy LTC insurance (cf. Finkelstein and Poterba,

2004). Another explanation for the low demand for LTC insurance is the availability

of informal care (Mommaerts, 2024). Combining insurance when risks are negatively

correlated has been proposed to reduce adverse selection (Murtaugh et al., 2001). Due

to the well-documented wealth-health gradient, a negative correlation between LTC use

and mortality risk might be present for socioeconomic groups. Despite their theoretical

potential, old-age insurances that combine LTC insurance with annuities are still not

very common, and their ability to cope with adverse selection is poorly understood.1

1The American Association for Long-Term Care Insurance highlights the favorable experience with
LTC combination products over standalone LTC insurance; however, the number of policies sold remains
limited, see: https://www.aaltci.org/long-term-care-insurance/learning-center/ltcfacts-2019.
php and https://www.aaltci.org/linked-benefit-faqs/ [both retrieved on: October 20th, 2023].

https://www.aaltci.org/long-term-care-insurance/learning-center/ltcfacts-2019.php
https://www.aaltci.org/long-term-care-insurance/learning-center/ltcfacts-2019.php
https://www.aaltci.org/linked-benefit-faqs/
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4 Chapter 1. Introduction

Chapter 3, therefore, addresses the following questions:

3a. How large are socioeconomic differences in LTC use and remaining life expectancy?

3b. What determines a combination of insurances that minimizes adverse selection?

3c. What is an optimal combination of annuity and LTC insurance?

While adverse selection might exist in private insurance markets, public programs warrant

less redistribution when socioeconomic differences in health are present (Poterba, 2014;

Auerbach et al., 2017). As the income-rich live longer than the income-poor, they

receive more years of social security benefits.2 In contrast, better health may induce

lower LTC needs for the income-rich, implying fewer years of costly out-of-pocket LTC

expenditures.3 Consequently, there is growing consensus that reforms of old-age social

insurance must account for both income and health disparities.

Despite being the workhorse model for studies on household’s welfare (Low and Meghir,

2017), a life cycle model is rarely adopted in studies on the welfare or wealth effects of

heterogeneous health in old age. Contrary to reduced-form models, life cycle models

are structural models that directly link consumption and saving to obtaining utility.

Beyond this, life cycle models are designed to analyze the contribution of heterogeneous

risks, counterfactual policies, and saving motives to wealth accumulation. In the model,

consumption and saving are the endogenous result of exposure to income and health risk,

the available budget, preferences, and institutions. In this light, precautionary saving

against uncertain future health (LTC) expenditures has proven relevant (De Nardi et al.,

2010; Nakajima and Telyukova, 2024). Furthermore, ample literature shows that more

affluent households hold a strong motive for saving for a bequest; the strength of this

saving motive can be estimated with a life cycle model (De Nardi et al., 2010; Lockwood,

2018).

2For socioeconomic inequality in mortality, see, e.g., Deaton (2002); Smith (2007); Chetty et al.
(2016).

3For socioeconomic inequality in LTC use, see, e.g., Goda et al. (2011b); Jones et al. (2018); Rodrigues
et al. (2018); Tenand et al. (2020a).
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Related, Chapter 4 aims to answer the following questions:

4a. How large are the distributional consequences of socioeconomic differences in LTC

use and mortality?

4b. What underlying mechanisms drive the redistribution, in terms of saving preferences

and elements of the pension and LTC system?

To answer the questions in this thesis, we make use of unique administrative data on

the dates of LTC use and death. However, many administrative data sets are stock

samples, implying a dynamic selection problem that has to be addressed. The data are

typically observed from a given date onwards, and shorter spells ending before that date

are left out, i.e., the sample is left-truncated. Consequently, subjects with favorable

characteristics for long durations are over-sampled. This dynamic selection due to left

truncation also happens to unobserved characteristics, so-called frailty. Ignoring dynamic

selection due to left truncation can severely bias estimates of a duration model (van den

Berg and Drepper, 2016). Related, we answer the following questions in Chapter 5:

5a. How can we account for dynamic selection due to left truncation when estimating

LTC use and mortality risks?

5b. How large is estimation bias if dynamic selection due to left truncation is ignored?

Related to research question 5a., we develop a general estimation method and apply

this method in Chapter 2 to 4.

1.3 Summary and Main Findings

In Chapter 2, we examine the durations of no LTC, home-based care, and institutional

care and the transition probabilities between these care arrangements, given a need

for care (a low or high physical or cognitive impairment). As a first step, we provide

the empirical durations and transition probabilities, where the need for care is the only

determinant that we study. We use unique administrative data that covers the history of
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6 Chapter 1. Introduction

LTC needs and LTC use for the entire population of 65+ individuals in the Netherlands

from 2009-2014. The data contain (single) spell data on home-based and institutional

care use. The Dutch social insurance system featured universal and comprehensive LTC

throughout this period, and co-payments were limited (Maarse and Jeurissen, 2016). As

a second step, we study the impact of covariates on the availability of informal care and

economic resources: having a partner or children (nearby), the health of the partner,

income, and (financial) assets. To this end, we use the duration model from Chapter 5.

We find that the median duration of a home-based care spell with a low physical

impairment is shorter than with a low cognitive impairment: two vs. five months. We

also find that individuals with a low or high physical impairment are more likely to

transition back to home-based care or no LTC. Turning to covariates, we find that having

a healthy partner or children delays LTC entry and fosters a return from institutional

to home-based care. However, while having a healthy partner delays institutional care

use of physically impaired home-based care users, this, surprisingly, accelerates the use

of institutional care for cognitively impaired individuals. Lastly, having more income,

assets, or being a homeowner implies delayed LTC entry and a higher likelihood of

returning to home-based care or no LTC use. Chapter 2 thus suggests substantial

heterogeneity in the risk of using LTC.

Chapter 3 quantifies socioeconomic and socio-demographic differences in lifetime

LTC use and mortality, and evaluates the implications for bundling LTC and annuity

insurance. We extend the adverse selection model of Einav et al. (2010) to derive the

combined insurance –a life care annuity– that minimizes adverse selection. In the model,

heterogeneous types decide whether to be insured or not. Besides a negative correlation

of risks, we derive two novel inputs for minimizing adverse selection with a life care

annuity: (1) the mean duration in each of the two states ‘no-LTC use’ and ‘LTC use’, (2)

the variance of the type-specific durations (reflecting heterogeneity). We then quantify

differences in LTC use and mortality by gender, marital status, and lifetime income

group. To this end, we use the same administrative data and duration models as in
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Chapter 2. We use the estimation results to construct and evaluate the composition of

optimal life care annuities.

We find substantial socioeconomic inequalities in LTC use and mortality. The difference

in remaining life expectancy at age 65 between the bottom and the top lifetime household

income quintile is 4.0 years for men and 2.3 years for women. Women in the bottom

income quintile spend 1.7 more years in LTC than those in the top income quintile, while

for men, this difference is 1.1 years. Hence, gender matters for the income gradient, which

is stronger for men in terms of mortality, and for women in terms of LTC. Regarding

informal care possibilities, being married reduces LTC duration by 22% for men and

substantially flattens the socioeconomic gradient. At the same time, this is far less

pronounced for women, potentially due to the high likelihood of outliving the spouse.

Following our theory and results, a life care annuity does not eliminate adverse

selection if a uniform premium is offered. This is due to a gender effect that implies

positively rather than negatively correlated risks: women live longer and use LTC longer.

Group-specific premia instead yield large differences for the optimal insurance products

over gender and marital status. Our results suggest that a life care annuity eliminates

adverse selection for single men and women but less for married men and women due to

unfavorable variances and correlations of the risks within these groups.

Chapter 4 quantifies the welfare implications of socioeconomic differences in LTC

use and mortality. By adopting a life cycle model, we endogenize the consumption and

saving decision of households. In the model, households draw utility from consuming,

bequeathing, sharing a household, and living (remaining life expectancy). Importantly,

using the model and evidence from Chapter 2 and 3, we allow LTC use and mortality

risk to differ across gender, marital status and socioeconomic status (the lifetime

household income quintiles). We estimate the parameters of the life cycle model using our

unique administrative data, including tax-reported household assets. Next, we conduct

counterfactual analysis to compute the additional welfare that higher socioeconomic

status groups experience due to living longer and using less LTC. To this end, we endow



641784-L-bw-vdVaart641784-L-bw-vdVaart641784-L-bw-vdVaart641784-L-bw-vdVaart
Processed on: 13-5-2024Processed on: 13-5-2024Processed on: 13-5-2024Processed on: 13-5-2024 PDF page: 22PDF page: 22PDF page: 22PDF page: 22

8 Chapter 1. Introduction

each household with the health risks of the bottom lifetime income group and compute

how much per-period consumption compensation each group requires to be as well off

as with their true health risks (cf. De Nardi et al., 2024). Also, we study bequests

and co-payments as drivers behind the welfare effects. To this end, we re-compute our

welfare measure while removing bequest saving and LTC co-payments from the model

one by one.

We report substantial distributional consequences of socioeconomic inequalities in

LTC use and mortality. The welfare effect amounts to 23.4% additional consumption

after age 65 for the households in the top lifetime income quintile compared to those in

the bottom lifetime income quintile. We estimate a strong bequest saving motive for

the income-rich, and consequently, their bequest saving motive explains 22.2 percentage

points of their welfare gain. If we remove (abolish) co-payments, their welfare gain

remains 21.8%, so only 1.6 percentage points are explained, implying that valuable

bequests rather than co-payments explain the welfare gain.

In Chapter 5, we derive the likelihood-based estimator for duration models used

in these chapters. We allow a frailty term (random effect) to be common among an

arbitrary amount of left-truncated spells. For example, we frequently observe multiple

LTC spells for the same individual: we assume individual frailty to be constant across

these spells. In a Monte Carlo experiment, we show that ignoring the dynamic selection

due to left truncation causes a substantial bias to time and covariate effects if frailty is

spell-specific, but nullifies if frailty is shared among five spells. At the same time, the

frailty variance is increasingly overestimated. Our user-written programs are available

as STATA packages.

1.4 Policy Implications

The above results are relevant for the design of old-age social insurance and private

insurance to accommodate heterogeneous LTC and mortality risks. We will now discuss

policy implications that follow from our analyses.



641784-L-bw-vdVaart641784-L-bw-vdVaart641784-L-bw-vdVaart641784-L-bw-vdVaart
Processed on: 13-5-2024Processed on: 13-5-2024Processed on: 13-5-2024Processed on: 13-5-2024 PDF page: 23PDF page: 23PDF page: 23PDF page: 23

1.4. Policy Implications 9

Consider the care recipient’s needs when facilitating informal caregiving

The results in Chapter 2 indicate that individuals with different types of disabilities

have distinct LTC paths. For cognitively impaired individuals, institutional care use

lasts longer and the partner is less effective in delaying the start of this state. Thus,

family members of individuals with cognitive impairments have more prolonged exposure

to burdensome caregiving, and their caregiving could be less effective in reducing the

uptake of formal LTC use. With this in mind, our results stress a need for separate

support programs for informal caregivers of cognitively and physically impaired LTC

users. These programs include, for example, training and leave arrangements for informal

caregivers, such as the ‘Wet Arbeid en Zorg’ (WaZo) in the Netherlands and the ‘Family

and Medical Leave Act’ (FMLA) in the U.S.. While these programs exist in practice,

they are not necessarily tailored to the disability type of a care recipient.

Develop separate care arrangements for private nursing homes

We show in Chapter 2 that individuals with more income or wealth postpone institutional

care use and return home faster if they use institutional care. More affluent individuals

thus live at home longer. In this light, our findings provide scope to opening more

private residences and private nursing homes where individuals pay out of pocket for

the accommodation while the government finances the care. This implies a shift away

from publicly provided LTC to private providers, thus a possible demand for private

insurance against nursing home costs.

Allow for flexible combinations of pensions and LTC insurance

Our analysis in Chapter 3 shows that adverse selection for stand-alone pension annuities

and LTC insurance is reduced when combining the products, especially for single-person

households. This reduction in adverse selection could be achieved with the life care

annuity we propose, i.e., offering a top-up benefit when needing LTC. An attractive

alternative would be to allow existing pension annuities or life insurance to pay for

LTC cost, a so-called LTC rider. While the idea sounds intuitively appealing, the
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10 Chapter 1. Introduction

willingness to buy these products is very low in the U.S. (Chen et al., 2022a). With this

in mind, governments could fiscally stimulate the use of LTC riders by counting this as

a tax-deductible health expenditure.

Allow group-specific premia for a combined pension and LTC insurance

Our results in Chapter 3 reveal that a combined LTC insurance and annuity only

effectively combats adverse selection if premia can depend on gender and marital status.

However, in the European Union, the Court of Justice declared gender-specific premia

invalid with European legislation and prohibited this practice in Europe in 2012. Gender-

based pricing in insurance is still practice for many insurances and many states in the

US, although the Affordable Care Act banned discrimination over gender for health

insurance in 2014. Instead, allowing gender- and marital status-specific premia would

lower adverse selection.

Consider health inequalities and redistribution when designing old-age social

insurances

Our findings in Chapter 4 show that socioeconomic differences in mortality and LTC

use lead to higher retirement income and lower co-payments for wealthier individuals.

Governments could view this as an unintended income-regressive redistribution and

might want to repair the welfare effects. Offering a lump sum payment at retirement

could reduce the effect of health inequalities on retirement benefits. While lifetime

annuity benefits depend on an individual’s lifetime, the lump sum payment is instead

based on the population life expectancy, and thus effectively the same for everyone. In

line with more equal benefits, the Dutch government is currently discussing the plan to

allow individuals to receive a maximum of 10% of their accrued second pillar pension in

the form of a lump sum payment (Mehlkopf et al., 2019). Similarly, our findings speak

for tying the statutory retirement age to career length because shorter-living (lower)

lifetime income quintiles usually start working at younger ages. Consequently, the life

expectancy in retirement is more homogenous across socioeconomic groups.
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Increase taxation of bequests

Our results in Chapter 4 show that the more affluent leave larger bequests due to living

longer (more pension) and using less LTC. If governments perceive this as an undesirable

income-regressive redistribution, then higher taxes on bequests could introduce more

actuarial fairness into the old-age (social) insurance system. It should, however, not

be forgotten that this demands good coordination with the tax system of inter-vivos

transfers, as inter-vivos can substitute bequests (Kopczuk, 2013).

1.5 Avenues for Future Research

Chapter 2 documents the importance of the availability of informal care and economic

resources for realized transition paths in the LTC system. Future work can aim for a

better understanding of the causal effects of these determinants by doing policy evaluation.

A relevant question is, for example, to what extent do co-payments limit entry into

home-based and institutional care? Furthermore, to what extent does mandating (some)

informal care provision reduce the entry and duration of institutional care use? In recent

years, the Dutch government implemented several reforms that could be leveraged to

answer these questions, including more stringent eligibility criteria for institutional care

and higher co-payment rates on assets. While other work already aimed to look at the

cross-sectional effects of such policy reforms (for co-payments, see Tenand et al., 2023),

studying transitions and persistence of using LTC remains an avenue for future research.

Policy evaluations are also a natural follow-up for our life cycle model that quantifies

the welfare effect of health inequalities in Chapter 4. Our life cycle model can be used in

an analysis that compares different setups of social security and public LTC insurance

in terms of efficiency and equity, while considering health inequalities. In this respect, it

would be interesting to compare two extreme systems that only consist of private or

public LTC insurance, i.e., the U.S. welfare state versus the Northern European welfare

state. Doing these more profound policy analyses would undoubtedly make the working

age stage of the life cycle more relevant, i.e., when individuals decide to work, pay social
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12 Chapter 1. Introduction

contributions, accumulate savings, and buy insurance. Our current analyses focus more

on the health inequalities that occur at a later age, so we pay less attention to the

working age stage.

The life cycle model and the empirical results from Chapter 3 and 4 can also be used

to compute the adverse selection costs of offering private LTC insurance and annuities.

While adverse selection costs of single products were a topic in earlier work (see, e.g.,

Boyer et al., 2020), the adverse selection cost for a combined product has never been

formally identified. Such analysis demands individual-level data on choices (trade-offs)

between the different insurances and data on individual characteristics and subjective

information; these data usually do not co-exist. It is worth mentioning that recently,

using our results from Chapter 3 to price the products, a LISS panel survey was set up

on hypothetical trade-offs between the products (de Bresser et al., 2022, 2023). The

survey data can be merged with our administrative data, leaving an excellent laboratory

setting to study the adverse selection cost of combined LTC and annuity insurance.

Another key insight from our study that requires further study is a strong bequest

saving motive by Dutch households. A simple question could be: do individuals plan

to leave a bequest, and if so, when do they start planning? One could also turn the

question and take the recipient’s perspective: do households anticipate bequests, and

do their life cycle choices, including labor supply, housing, and informal care provision,

differ because of anticipated bequests? Answering these typical questions is important

for better coordination of taxing bequests and labor income, which are substitutes to

some extent. At a higher level, this touches upon the extent to which intergenerational

mobility of (human) wealth is present within the society and across multiple generations

(Chetty et al., 2014; Lindahl et al., 2015), which we plan to study in future work.

Finally, in this thesis, we gain insights into the heterogeneity of life-course events

occurring relatively late in life, such as widowhood, health decline, and eventual death.

While these are substantive health risks late in life, these can also play on earlier in life.

Therefore, we encourage future work to also focus on the many sources of uncertainty
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present earlier in life, e.g., divorce or disability risk. It would be interesting to see how

these risks impact life cycle outcomes such as having adequate retirement income and

savings at retirement.
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Chapter 2

Pathways in Long-term Care and its

Determinants: Evidence from Dutch

Administrative Data

This chapter is joint work with Rob Alessie, Max Groneck, and Raun van Ooijen. We thank
Bertrand Achou, Julien Bergeot, Arjen Hussem, Marike Knoef, Kathleen McGarry, Torben Heien
Nielsen, Arthur van Soest, Marianne Tenand, Bas Werker, and seminar participants at various seminars
and conferences for helpful comments. We thank Netspar for financing data access through two theme
grants: ‘Uncertainty over the life cycle: implications for pensions and savings behavior’ (2017-2020) and
‘Health and labor market uncertainty over the life cycle: The impact on households’ risk capacity and
retirement income adequacy’ (2022-2024).
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16 Chapter 2. Pathways in Long-term Care and its Determinants

2.1 Introduction

Confronted with an aging population, many OECD countries seek to provide adequate

long-term care (LTC) while keeping the system sustainable. Policy-makers encourage

cost-efficient alternatives to receiving care in an institution, such as home-based care.

Two-third of care recipients use home-based care, while only making up one-third of LTC

spending (OECD, 2019). Postponing an individual’s transition into an institution and

fostering a return home are two ways policy-makers can reduce institutional care use.

Understanding the transitions into and out of LTC arrangements and their determinants,

such as different needs for care, availability of informal care, and (non-)financial assets

(de Meijer et al., 2011; Hiedemann et al., 2018; Diepstraten et al., 2020), is a necessary

first step if policies seek to reduce public LTC costs.

While cross-sectional evidence on using LTC is fairly conclusive, the transition path

between receiving home-based and institutional care and the role of informal care and

economic resources is much less understood. For example, informal care substitutes

personal care provided at home (van Houtven and Norton, 2004; Bonsang, 2009) but

not necessarily in an institution (Charles and Sevak, 2005; Bergeot and Tenand, 2023).

Is this because informal care postpones using home-based care, but not the transition

from home-based care to a nursing home? Yet, identifying pathways in LTC conditional

upon the need for care is challenging due to a lack of longitudinal datasets reporting

both the need for and use of LTC arrangements at high frequency with the possibility

to link individual and family members’ characteristics.

In this chapter, we examine the determinants of the duration of no LTC, home-based

care, and institutional care and transitions across the arrangements, given the need

for care. We estimate a multi-state model on administrative data, covering the history

of LTC needs and use of different formal LTC arrangements for all 65+ individuals

in the Netherlands from 2009-2014. We link our unique data to personal records on

family, socioeconomic and socio-demographic characteristics. We particularly focus on

determinants that reflect availability of informal care and economic resources: having a
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2.1. Introduction 17

partner or children (nearby), the health of the partner, income, and (financial) assets.

To analyze whether the potential availability of informal care and economic resources

accelerate or delay each of the transitions, we apply the novel estimation procedure for

mixed proportional hazard models from Chapter 5. The estimated specification allows

us to distinguish the covariate effects from other time-varying circumstances such as

own health, duration dependence, and unobserved heterogeneity (frailty).

A main advantage of using administrative data is that they allow us to estimate the

effects for subpopulations precisely. Specifically, we contrast users of LTC with a low or

high physical or cognitive impairment. We are hereby motivated by a wide literature

that documents large heterogeneity in the need for care (see, e.g. de Meijer et al., 2011).

Moreover, Bonsang (2009) shows that severity of a care need is a factor that reduces

informal care provision. The Dutch institutional setting offers an ideal opportunity to

study them. A mandatory eligibility assessment grants access to the LTC arrangements

for a particular hours per week (defining a low or high need here) based on a diagnosed

type and severity of impairment. Universal and comprehensive public LTC insurance

during the observational period allows us to largely abstract from dynamics that could

be induced by private LTC insurance (see e.g., De Nardi et al., 2010).

We have four main findings. First, we find that physically and cognitively impaired

individuals differ largely in their pathway through LTC arrangements, as measured by

the duration and realized transition. More specifically, our results reveal that temporary

use of LTC (cf. Einav et al., 2022) predominantly involves physically impaired individuals.

The median time spent in home-based care is two months for individuals with low physical

impairments, while it is about five months when having low cognitive impairments.

Also, those with physical impairments more often transition to less specialized LTC

arrangements, so from institutional care to home-based care or from home-based care

to no LTC use. For instance, of those in home-based care, 37% with low physical

impairments transition to no LTC, which is only 11% for those with low cognitive

impairments.
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18 Chapter 2. Pathways in Long-term Care and its Determinants

Second, the effect of availability of informal care depends on the transition and

potential source of informal care. While having a healthy partner decreases the hazard of

institutional care use by 20% for home-based care users with a high physical impairment,

we find that having a healthy partner increases the hazard of institutional care use by

19% for home-based care users with a high cognitive impairment (reference: singles).

Third, the hazard of going from home-based care with a low physical impairment to no

LTC use is 54% higher when having a healthy partner. Albeit weaker than the effect

of the healthy partner, we find that having children delays the use of more specialized

care and accelerates the use of less specialized care for all transitions. Lastly, turning to

economic resources, we find that having more income, financial assets, or owning a house

fosters a return to less specialized care and delays a transition into more specialized

care.

We contribute to a broad literature on the need for LTC as a determinant for using

LTC arrangements. The vast amount of work focuses on a single point in time (see

e.g.: Portrait et al., 2000; Luppa et al., 2010; de Meijer et al., 2011; Sovinsky and Stern,

2016; Hiedemann et al., 2018; Duell et al., 2021). A multi-state framework is used by

Dostie and Léger (2005) to examine transitions across living arrangements, which can be

recurring but by definition exclude home-based care. Fuino and Wagner (2018) use the

framework to study transitions into more specialized LTC arrangements, including home-

based care but not allowing returns to less specialised care, i.e. states are not recurring.

The distinctive aspects our model, which are crucial to explain observed heterogeneity

in pathways, are including heterogeneity by need for care, recurrent transitions and

home-based care.

Second, we provide evidence of the effects of informal care receipts on formal LTC

use. While there seems to be consensus on informal care substituting several sorts of

home-based care (Bolin et al., 2008; Kalwij et al., 2014; Barczyk and Kredler, 2018),

the evidence on institutional care is mixed as some studies report substitutability with

informal care (van Houtven and Norton, 2004; Charles and Sevak, 2005), whereas some
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do not (Bergeot and Tenand, 2023). Instead, by looking at the timing of a transition,

we show that substitutability depends on the direction of a transition (i.e., to less or

more specialized care) and the type of impairment. Particularly, we do not find evidence

for substitution when going from home-based care to institutional care with a cognitive

impairment. These individuals comprise a substantial part of the study population in

Bergeot and Tenand (2023), so likely drive their findings.

Third, we contribute to the literature on income and assets as determinants for LTC

use (e.g. Charles and Sevak, 2005; Luppa et al., 2010; Rouwendal and Thomese, 2013).

Most of these results are mixed due to stringent eligibility criteria and the existence of

private insurance in the U.S.. In turn, because eligibility is not means-tested and private

insurance is virtually non-existent in the Netherlands, we attribute our estimated effects

to selecting options other than a formal LTC arrangement, e.g. making adaptations

to the home environment (Diepstraten et al., 2020), compensating informal caregivers

(McGarry and Schoeni, 1997), or privately paying for LTC (De Nardi et al., 2010).

Knowing key determinants for pathways in LTC is essential for developing policies

to encourage elderly to live independently at home for longer. Policy-makers can use

our findings to equip high-risks groups with personalized support that anticipates their

future need and use of LTC. For example, home adaptations for singles without children

or informal care training for partners of cognitively impaired. Also, the findings can be

used to make eligibility criterions stricter for low-risk groups or can be applied when

having to prioritize risk groups on waiting lists for institutional care. Moreover, finding

that more affluent live longer at home while receiving care, implies that it can be sensible

to allow to receive publicly-covered care in a (private) facility of own choice, where

individuals pay for accommodation out-of-pocket.

We proceed as follows. Section 2.2 describes the institutional context. Section 2.3

and 2.4 describe the data and provide descriptive statistics. Section 2.5 describes the

empirical approach. Section 2.6 presents the results. Section 2.7 discusses and concludes.
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2.2 Public LTC in the Netherlands 2009-2014

Public expenditures on LTC are 4.3% of GDP which is the highest among all OECD

countries (OECD, 2015). The high expenditures go along with a comprehensive coverage

(Colombo et al., 2011). While in most countries the out-of-pocket expenditures for

formal LTC are substantial, in the Netherlands almost all formal LTC is paid for by

social insurance contributions. Only 8% of the costs was financed by income- and

asset-dependent co-payments in 2012 (Maarse and Jeurissen, 2016). Privately paid

services were virtually absent until 2014 (Hussem et al., 2020). A large budgetary cut

in 2015 mandated a shift from public institutional care to home-based and privately

arranged care; we leave this outside the scope of our study.

Tailored to the type and severity of their health problem, individuals receive paid care

at home or in specialized institutions. Home-based care includes social support (e.g. adult

day care), personal care (e.g. washing and feeding) and nursing (e.g. wound dressing).

About 30% of the LTC beneficiaries aged 65 and older live in an institution, where they

receive a package of these services (Tenand et al., 2020a). A nursing home provides

intensive care for elderly with severe cognitive or physical problems, e.g. following a

stroke. Until 2013, care could also be rehabilitative, like Skilled Facility Nursing in the

U.S. (Hackmann and Pohl, 2018). For elderly who cannot live independently but need

less intensive care, residential care homes provide assisted living (Kok et al., 2015). The

institutions have to adhere to strict guidelines on high quality of care (Bär et al., 2022).

To become eligible for publicly-provided care, the individual, or their family member

or health care provider, has to apply at the government agency CIZ (Bakx et al.,

2020). The eligibility decision is made by an assessor. The assessor collects information

about functional limitations from current and prior applications, and might consult the

applicant or health care provider (e.g. the GP) for additional information. Individual’s

income or wealth is not taken into account. Informal care reduces entitlements to LTC

insofar as household members are capable of providing personal care. This applies only

if the need is expected to last less than three months and home-based care is required;



641784-L-bw-vdVaart641784-L-bw-vdVaart641784-L-bw-vdVaart641784-L-bw-vdVaart
Processed on: 13-5-2024Processed on: 13-5-2024Processed on: 13-5-2024Processed on: 13-5-2024 PDF page: 35PDF page: 35PDF page: 35PDF page: 35

2.2. Public LTC in the Netherlands 2009-2014 21

but not if institutional or nursing care is required (Mot, 2010).

Following a standardized procedure with some discretionary power, the assessor

then decides the type of care, amount of care, and length of time being eligible, or

rejects the application. The entitlement is tailored to the main health problem that the

assessor identifies: a physical impairment or disability, cognitive impairment, intellectual

disability, psychiatric disorder, or sensory disability1. Beneficiaries of institutional care

require round-the-clock and are granted access to one of the 52 default ‘care severity’

packages, specifying the care type (e.g. dementia care) and indicating the average

number of hours they may use nursing care, personal care, and social support. Home-

based care entitlements specify the hours of care for each of these LTC services apart.

Care is not automatically granted; about 11% of the applications is rejected (CIZ, 2013).

A new assessment occurs each five years or if the health situation changed.

Eligible elderly could opt for in-kind benefits or a lower personal budget used to pay

for caregiving, which 4% did in 2012 (Algemene Rekenkamer, 2015). Also, they may

convert an entitlement to institutional care into equivalent home-based care, implying

lower co-payments. Wait times are limited: virtually all elderly can use their entitled

care within the legal acceptable wait time of six weeks (CVZ, 2013). Bridged by using

home-based care, elderly with a preferred institution may choose to wait longer.

A few relevant policy changes took effect in 2013. First, the co-pay rate on assets

increased from 4% to 12%. However, in response individuals do not seem to have

substituted institutional care by home-based care (Tenand et al., 2023). Further, the

care severity packages involving only a few hours of residential care were no longer

granted to new beneficiaries; they are granted home-based care instead. Lastly, the

insurance of institutional rehabilitative care is privatized. Consequently, the number of

publicly institutionalised elderly dropped by 24% between 2012 and 2014 (CBS, 2014).

Overall, the Dutch LTC system provided generous coverage until 2014, implying that

pathways in LTC are primarily driven by an individual’s health, personal circumstances

and preferences.
1The classification is based on ICD-10, ICF and DSM-IV standards (CIZ, 2014).
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2.3 Data

We use high-frequency administrative data on the individual’s use of LTC arrangements,

need for LTC, availability of informal care, and individual characteristics collected by

Statistics Netherlands. We include all individuals aged 65 and over from 2009 to 2014

with information on their stays in institutional care, use of formal home-based care, date

of death, eligibility assessment, family composition, and individual characteristics.

The data infrastructure at Statistics Netherlands allows us to link characteristics at

the individual and family level across all registers and over time. We start with the

Municipal Population Register, that reports basic socio-demographic characteristics on

birth year, ethnicity and gender for all residents between 1995 and 2014. We only keep

surviving residents on January 1st 2009, because from then onwards the registry on the

eligibility assessment is available. Also, we exclude individuals who migrated during

this period.2 Our target population comprises of 3,590,373 individuals aged 65 and over.

Our studied window runs from 2009 to 2014.

2.3.1 Spell Data on LTC and Mortality

The key event in our analysis is the timing of a transition between no LTC use, home-

based care, institutional care, and the transition into death. To compute the state

duration and the subsequent transition, we use the dates on which the individuals used

formal home-based or institutional care and passed away. We also observe the date

and outcome of their eligibility assessment (see Table 2.1 for an overview of variables),

which we will use to proxy for the need of care. We will study the timing of a transition

conditional upon the need for care.

We must go through a few steps to construct the desired duration variables. Within a

spell of no LTC use, we distinguish two sub-spells: someone has never used LTC before

(a potential first-time user) or someone ever used LTC before.3 The spell of ‘a never
2We define being migrated as: the individual or partner does not have a living address in the

Netherlands between 2004 and 2014.
3We observe use of LTC since 2004. Any previous use is assumed to have not occurred.
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user of LTC’ spell starts on the 65th birthday and the spell of ‘an ever user of LTC’

starts on the date that LTC use stopped. The latter group is an relevant subgroup to

look at because they possibly have health problems that are more difficult to cover with

informal care. We keep all spells that are ongoing on January 1st 2009 or start after

that date.

Within a spell of home-based or institutional care use, we look at four sub-spells: having

a low physical impairment, a high physical impairment, a low cognitive impairment, or

a high cognitive impairment. Having a physical impairment includes having a physical

disability. We only keep spells starting after January 1st 2009, because for those we

know the start date of the entitlement. The maximum observed spell duration is thus

six years.

We define a low (high) impairment as an entitlement to hours of care below (above)

the observed median (we report and discuss the cut-off values in Section 2.4). For

example, a home-based care user with a physical impairment and who is entitled less

than 5.5 hours of care (the median for this group), has a low physical impairment. If the

individual is entitled to home-based care, we compute the hours of care as the sum of

entitled personal and nursing care. To do so, we impute the absolute hours of personal

and nursing care with the midpoint of each category.4 For institutional care, we know

the care severity package, which grants individuals access to particular hours of care.

Appendix B.1 provides the mapping for each package into hours of care.

Home-based care use is reported every four weeks. We observe whether the individual

used this care during that period, but not exactly when. To circumvent that we do not

know the start and end date of use, we assume that the use occurred during the entire

four weeks. To focus on individuals with health problems, we restrict home-based care

users to users of personal or nursing care and exclude those who merely receive social

support (see Appendix B.2 for a complete description of the LTC services). We observe

in-kind care but not the minor share with a personal budget (4.4% of the users in 2012).

The need for LTC and the use of institutional care are reported daily and unrestricted.
4The categorical values are not our choice, but applied by CIZ, see CIZ (2014) for further information.
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Lastly, we close gaps of less than six weeks between two spells of home-based care,

institutional care, or need for LTC. If home-based and institutional care use follow-up

each other within six weeks, we assume that the first event continued during the gap.

This smoothing aligns with the legally accepted waiting time of maximally six weeks

between different LTC arrangements in the Netherlands (‘de Treeknorm’, see Hartmans

et al., 2009).

2.3.2 Determinants of LTC use

Wherever we can, we stay close to the definitions in Duell et al. (2021). They use the

same administrative data as us to study the link between used and entitled hours of

care.

Availability of informal care. We construct two variables to capture the impact of

the potential availability of informal care on the transitions: having a (healthy) partner

and distance from the parent to the children. Partnered individuals are either married,

have a partnership contract, or cohabit on a contractual basis. To account for health-

dependent availability of informal care, we distinguish between a partner who uses no

LTC, home-based care, or institutional care. Distance to the closest child proxies for the

direct availability of informal care by offspring (cf. Bonsang, 2009). This distinguishes

between a child living in the same municipality or a different municipality than the

parent.

Economic resources. We also consider socioeconomic variables that could reflect

the preference or financial possibility to choose a particular LTC arrangement. To

this end, we construct decile groups on household income and financial assets and

look at homeownership that could reflect a preference to age in one’s own house (for

evidence for institutional care, see Rouwendal and Thomese, 2013). Household income is

measured pre-tax and comprises income from labor and capital, retirement income, and

social insurance benefits of all household members. To make single and multi-person

households comparable, we equivalize the household income by the OECD equivalence

scale (OECD, 2011). Financial assets are the sum of checking and savings, stocks and



641784-L-bw-vdVaart641784-L-bw-vdVaart641784-L-bw-vdVaart641784-L-bw-vdVaart
Processed on: 13-5-2024Processed on: 13-5-2024Processed on: 13-5-2024Processed on: 13-5-2024 PDF page: 39PDF page: 39PDF page: 39PDF page: 39

2.3. Data 25

bonds, and excludes entrepeneurial wealth and other real estate such as the own house.

Lastly, we include another list of covariates on health and socio-demographics to

account for omitted variable bias: gender, ethnicity, region of residence, and health

proxied with medication use. Unfortunately, the registry excludes medication prescribed

in hospitals and nursing homes, and we, therefore, do not stratify our analyses by this

variable.

Additional information about the data sets and variables is provided in Appendix B.1.
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Table 2.1: Overview of Variables

Measurement frequency
Use of formal home-based care Every four weeks.

Use of institutional care Daily.

Eligibility assessment Daily.

Death Daily.

Availability of informal care Daily.

Individual characteristics Yearly.
Eligibility assessment (entitlements)

Main health problem 1: Physical impairment; 2: Physical disability;
3: Cognitive impairment; 4: Sensory disability;
5: Mental disorder; 6: Intellectual disability.

Hours per week of personal care 1: 0-2; 2: 2-4; 3: 4-7; 4: 7-10; 5: 10-13;
at home∗ 6: 13-16; 7: 16-20; 8: 20-25; 9: 25+.

Hours per week of nursing care 1: 0-2; 2: 2-4; 3: 4-7; 4: 7-10; 5: 10-13;
at home 6: 13-16; 7: 16-20; 8: 20-25; 9: 25+.

Care severity package for 52 possible packages: see Appendix B.1
institutional care for the entitled hours of care.

Availability of informal care
Marital status/health 1: Single; 2: Partner without LTC;

3: Partner uses home-based care;
4: Partner uses institutional care.

Distance to the closest child 1: No children;
2: Lives in the same municipality;
3: Lives in a different municipality.

Economic resources∗∗

Equivalized household income∗∗∗ Decile groups and levels in 2019 es.

Household financial assets Decile groups and levels in 2019 es.

Homeowner 1: Yes; 0: No.
Notes: ∗ For the category 25+ we know the exact amount of hours exceeding 25. The cate-
gorical values are not our choice, but applied by CIZ, see CIZ (2014). See Appendix B.2 for
a complete description of the LTC services; ∗∗ Appendix B.1 provides the values of gender,
ethnicity, region of residence, and medication use; ∗∗∗ Equivalized with the OECD equivalence
scale (OECD, 2011).
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2.4 Descriptive Statistics

Table 2.2 shows descriptive statistics by used LTC arrangement. To compare groups

across LTC arrangements without age effects being present, we focus on the cross-section

of 85-year-olds on January 1st in 2009-2014.5

The first block shows that individuals without LTC use are more frequently men,

married, homeowners, and have higher income and assets. The probability of having

children does not vary substantially across arrangements. Another pattern worth high-

lighting is the correlation between the arrangements used by two partners. Respectively

88%, 37%, and 57% of the couples have both members using no LTC, home-based

care, or institutional care. Lastly, we see that most home-based care users have a

physical impairment as main health problem (81%). Instead, institutional care users

more frequently have a cognitive impairment (40%).

To further understand the need for LTC, Table 2.3 provides the distribution of hours

of care by used LTC arrangement and main health problem. For each arrangement,

individuals with a physical impairment are entitled to fewer hours of care than those

with a cognitive impairment. The median entitled hours of care is 5.5 for home-based

care users with a physical impairment, while this is 13.25 when having a cognitive

impairment. The medians serve as cut-offs to indicate a sub-spell of low or high need;

below the median means a low need, and vice versa. For example, home-based care

users with a physical impairment and entitlement below 5.5 hours have a ‘low need’.

Part of the difference in hours of care comes from the entitled arrangement in home-

based care. While 48% of the home-based care users with a cognitive impairment has an

indication for institutional care, this is only 12% for those with a physical impairment

(not shown). Given that there is a care severity package tailored to dementia which

assigns to 19.25 hours of care, we already see a clustering at this value for home-based

care users with a cognitive impairment. As a consequence, we cannot exclude the

possibility that they wait for an open spot in their preferred institution.
5Some have an entitlement to LTC with an unknown start date as this entitlement starts before

January 1st 2009. We drop those observations once we apply our duration analysis.
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Table 2.2: Observed Characteristics at Age 85 by Used LTC Arrangement

No LTC use Home-based Institutional
care care

Woman = 1 0.60 0.73 0.76
Partner = 1 0.42 0.27 0.20
Partner uses same arrangement = 1∗ 0.88 0.37 0.57
Has children = 1 0.85 0.85 0.81

Median equivalized household income∗∗ 21.0 19.6 18.3
Median household financial assets∗∗ 35.5 27.0 24.8
Homeowner = 1 0.40 0.29 0.17

Main health problem:
Has physical impairment = 1∗∗∗ 0.81 0.52
Has cognitive impairment = 1 0.10 0.40
Has other problem = 1∗∗∗∗ 0.02 0.04
Has no entitlement = 1 0.07 0.04

Individuals (%): 207,819 (64) 63,083 (20) 52,580 (16)

Notes: ∗ Conditional upon having a partner; ∗∗ 000s e; ∗∗∗ Physical impairment or disability;
∗∗∗∗ A sensory disability, intellectual disability or mental disorder; Appendix Table B.5 provides
the numbers for the full population.

Table 2.3: Entitled Hours of Care at Age 85 by Used LTC arrangement and Health
Problem

Home-based care Institutional care
Impairment: Physical Cognitive Physical Cognitive
Hours of care per week:

0-2 17 6 2 4
2-4 23 11 0 0
4-7 25 15 10 0
7-10 16 12 19 1
10-13 8 5 22 1
13-16 4 23 13 18
16-20 2 26 21 66
20-25 2 2 10 10
25+ 1 0 4 0∑

100% 100% 100% 100%

Median∗ 5.5 13.25 11.5 19.25
N 51,001 6,572 27,395 21,275

Notes: ∗ The median define a low and high need in this chapter. Low need: the entitled hours
of care is below the reported median, and vice versa for a high need; Appendix Table B.6
provides the numbers for the full population.
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2.5 Empirical Framework

The descriptive statistics focus on the use of LTC and the need for LTC in the cross-

section, but we are rather interested in their longitudinal outcomes: for how long do

individuals use an LTC arrangement with a particular need, and what is their subsequent

state? We have to adopt a multi-state duration model to describe and answer how these

outcomes relate to the potential availability of informal care and economic resources.

We are interested in the duration T and the next state of the different sub-spells from

Section 2.3.1. To this end, we use a competing risks framework. Figure 2.1 provides a

motivating example of home-based care users with a low physical impairment. Let i

indicate the current state. Five mutually exclusive next states exist, i.e., competing risks.

We closely follow the two-step counting procedure by Kalbfleisch and Prentice (1980)

to estimate the underlying distributions. First, we compute the duration distribution

Sii(t) of remaining in state i until time t. Next, to find out why some durations are

shorter than others, we analyze the transition to state j ∈ J \{i}. These transition

probabilities Sij(t) add up to 1 − Sii(t), the complement of the duration distribution: a

transition to another state j by time t. Lastly, and for parsimony, we estimate a mixed

proportional hazard model to quantify the impact of informal care availability and other

characteristics on the transitions.

Home-based
care use:

low physical
impairment

Home-based care use: another health problem

Home-based care use: high physical impairment

No LTC use

Institutional care use

Death

Si1(t)

Si2(t)

1 − Sii(t) Si3(t)

Si4(t)

Si5(t)

Sii(t)

Figure 2.1: A Competing Risk Setting in Our Study
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2.5.1 Duration Distribution and Transition Probabilities

We base estimation of Sii(t) on the conditional transition probability of leaving state i

at time t: λi(t). To compute λi(t), we have data on the number of individuals in state i

who can transition at time t, Ni(t), and those who actually do so during the subsequent

time interval dt, Di(t). Then:

λi(t) = P(t ≤ T < t + dt | T ≥ t, State = i) = Di(t)
Ni(t)

, (2.1)

which is the share of individuals at risk at time t who do transition.

In the data, individuals can have multiple spells of being in the same state, e.g.

repeated home-based care use. For our analysis, this means that the same individual

can be at risk multiple times at time t, each counting separately when measuring Ni(t)

and Di(t). We ignore possible dependence across spells in this descriptive analysis but

include this in the parametric model of Section 2.5.2.

Intuitively, survival probability Sii(t) is now the same as the probability of not

transiting in every preceding period, indicated by probability 1 − λi(t):

Sii(t) =
∏

k:t(k)≤t

(
1 − λi(t(k))

)
, (2.2)

where t(k) are all observed times in the data when a transition occurs. This is the

non-parametric Kaplan and Meier (1958) estimator for survival functions, which is an

asymptotic consistent estimator that accommodates left truncation of spells (sampling

ongoing spells on 01/01/2009) and right censoring of spells (sampling spells that have

not ended 01/01/2015). In Section 2.6, we will study the quartiles of this duration

distribution, found by setting t such that Sii(t) = 0.5, Sii(t) = 0.75, and Sii(t) = 0.25.

The second step decomposes the complement of duration distribution Sii(t), the

unconditional transition probability 1 − Sii(t), over the different destination states.

Let Sij(t) be the probability to be transitioned from i to j by time t, with Sii(t) +
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∑
j∈J \{i} Sij(t) = 1. The size of Sij(t) helps us understand the likelihood of a particular

transition.

To compute Sij(t), we use the survival distribution Sii(t) and conditional transition

probability from state i to j at time t, λij(t). Like λi(t), we identify λij(t) from the

number of individuals in state i who can transition at time t, Ni(t). However, we now

take those who actually do so from state i to j during the subsequent time interval dt,

Dij(t). Then, λij(t) is:

λij(t) = P(t ≤ T < t + dt, State = j | T ≥ t, State = i) = Dij(t)
Ni(t)

, (2.3)

which is the share of individuals at risk at time t who do transition from i to j. Note

the link with the overall transition probability (2.1): λi(t) =
∑

j∈J \{i} λij(t).

Sij(t) results from that the individual is in state i at some time point before t

and then made the transition from i to j. The incidence of this transition at t(k) is

Sii

(
t(k−1)) · λij

(
t(k)), the product of the probability of being at risk at time t(k−1) (2.2)

and then subsequently making the transition (2.3). Sii(t) explicitly corrects here for the

presence of competing risks: individuals could already have transitioned to any other

state before time t, making a transition at t impossible anyway. The probability to

transition between start time and time t is the sum of all incidence rates:

Sij (t) =
∑

k:t(k)≤t

(
Sii

(
t(k−1)

)
· λij

(
t(k)
))

. (2.4)

If t → ∞, then Sii(t) = 0 and we can refer to Sij(t) as long-run transition probabilities.

In our study, a finite tmax approximates the long run. tmax = 40 years for individuals

who have never used LTC before. We assume they do not use LTC since age 65.

tmax = 40 indicates the maximum observed age: 65 + 40 = 105. We take tmax = 11

years for current non-users of LTC who have ever used LTC before because we observe

LTC use between 01/01/2004 and 31/12/2014. Lastly, tmax = 6 years for all other states

because that is the duration of our data on the need for LTC.
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2.5.2 Mixed Proportional Hazard Specification

Next, we adopt a parametric Gompertz model with a random effect to compute an

interpretable estimate of the impact of the potential availability of informal care and

economic resources on the transitions. The parsimonious parametric model overcomes

that the estimations are yet non-parametric and meant to be descriptive. The random

effect accounts for unobserved heterogeneity and dynamic selection (see Section 2.5.3).

In parametric hazard models, the conditional transition probability λij is the commonly

adopted outcome variable (cf. equation (2.3)). This probability is scaled by dt, so the

outcome reflects transitions per time unit, i.e., a hazard rate. We assume a mixed

proportional hazard rate specification for each transition i to j (van den Berg, 2001):

λij(t|x(t), νij) = P(t ≤ T < t + dt, j|T ≥ t, x(t), νij , i)
dt

= νij ·ϕij(t)·exp (x(t)′βij) , (2.5)

separating into an individual random effect νij ∼ Γ
(

1
σ2

ij
, 1

σ2
ij

)
, duration effect ϕij(t) =

exp(γij · t) and a time-invariant effect exp (x(t)′βij). x(t) is a vector with time-varying

and time-invariant covariates whose impact βij we are interested in. We will report

exponentiated coefficients exp (βij), meaning the estimates feature a hazard ratio in-

terpretation. If the hazard ratio exceeds unit value, then an increase x(t) accelerates a

transition; it delays otherwise. Besides βij , we also estimate the parameters γij and σ2
ij .

Covariate vector x(t) consists of all variables from Table 2.1. We include each category

with a separate dummy. We proxy the potential availability of informal care with (the

health) of the partner and having children. In a heterogeneity analysis, we will split the

child effect by distance to the closest child and (the health) of the partner. Income- and

asset decile proxy for the impact of economic resources and asset- and income-dependent

co-payments to the transitions (Portrait et al., 2000). We also look at homeownership

to see whether individuals stay in their own house. We control for LTC needs with our

split by impairment type and level of need (low or high). Lastly, we include background

variables on gender, ethnicity, drug uptake (a proxy for frailty), region of residence (to



641784-L-bw-vdVaart641784-L-bw-vdVaart641784-L-bw-vdVaart641784-L-bw-vdVaart
Processed on: 13-5-2024Processed on: 13-5-2024Processed on: 13-5-2024Processed on: 13-5-2024 PDF page: 47PDF page: 47PDF page: 47PDF page: 47

2.5. Empirical Framework 33

account for regional variation in the supply and use of LTC, see: Duell et al., 2017), age

when entering the state, and year of observation (to account for policy changes).

A strength of the hazard model is its ability to encompass variables that vary continu-

ously. The (health of the) partner, having children, distance to the children, and region of

residence can change daily in the data. Income, assets, homeownership, observation year,

and drug uptake vary yearly. Age upon entry, ethnicity, and gender are time-invariant.

The term ϕij(t) accounts for the effect of time on making a transition, i.e., persistence

or inertia of care arrangements (Hiedemann et al., 2018). For example, individuals might

get emotionally attached to a state, or the cost and benefits of a transition vary over

time (Dostie and Léger, 2005). We assume a Gompertz function: ϕij(t) = exp(γij · t),

γij < (>) 0 indicating that time slows down (fastens) a transition, i.e., negative (positive)

duration dependence. While the interpretation of ϕ̂ij is mostly outside our scope, in a

robustness check, we will see whether our functional choice for ϕij affects estimates β̂ij .

The random effect –frailty– νij controls for any remaining unobserved heterogeneity,

such as the leniency of the randomly assigned assessor in granting access to LTC (Bakx

et al., 2020). While the assessor is randomly assigned, this could still imply initial health

differences leading to different duration lengths of LTC. In line with earlier work, we

assume a gamma distribution for νij because this well-proxies any frailty distribution

for high t and thus reduces misspecification error (Abbring and van den Berg, 2007).

For identification, we have to assume that observed characteristics x(t) are exogenous

with respect to unobserved characteristics νij at any t: x(t) ⊥ νij . The unobserved

heterogeneity in our example is exogenous due to the random assignment of an assessor.

Furthermore, our large battery of controls already reduces the role of unobserved

heterogeneity upfront. Additionally, we have to assume no anticipation of future

transitions with current characteristics x(t). For example, individuals foresee declining

health and, therefore, already start to use home-based care. Given that a mandatory

eligibility assessment is gatekeeper for home-based care, we can likely exclude such

anticipation.
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2.5.3 Model Estimation

We use the novel estimation procedure from Chapter 5 to estimate the mixed proportional

hazard specifications. As they are present in our data, this procedure allows for time-

varying covariates, right-censored and left-truncated spells, and individuals repeatedly

experiencing spells of the same state. Before discussing these empirical challenges, we

first discuss how we can tailor the estimation procedure of Chapter 5, meant to estimate

a single risk, to the competing risks setting we operate in.

We take the example from Figure 2.1 and assume that the transition from i to j = 1

occurred at time t. λi1(t) cannot be used directly in a log-likelihood estimation because

this is a rate and not a probability. Instead, we use the probability of going from i to

j = 1 by time t, Si1 (t), in a log-likelihood estimation. This probability solely consists

the hazard rates λi1(s | x(s), νi1), ..., λi5(s | x(s), νi5), 0 ≤ s ≤ t. To see this, we adopt

a latent failure time approach, defining Si1 as the joint probability (cf. Putter et al.,

2007):

Si1
(
t | νi1, ., νi5, {x(s)}t

s=0
)

= P(Ti1 ≤ t, Ti2 > t, ., Ti5 > t | νi1, ., νi5, {x(s)}t
s=0), (2.6)

where x(s)}t
s=0 is the covariate path between start and t, and Tij is the latent transition

time of i → j. For example, P(Ti1 ≤ t | νi1, .., νi5, {x(s)}t
s=0) is the marginal probability

that i → 1 occurs before t if there would not exist competing risks. However, these exist,

so Si1 had to incorporate that competing risks did not occur before t: Tij > t if j > 1.

Crucial for applicability of Chapter 5, we assume independent random effects across

transition types, νi1 ⊥ .. ⊥ νi5, implying that the joint probability (2.6) separates into

marginal probabilities for each transition apart:

Si1
(
t |νi1, ., νi5, {x(s)}t

s=0
)

= P(Ti1 ≤ t |νi1, {x(s)}t
s=0) ·

5∏
j=2

P(Tij > t |νij , {x(s)}t
s=0)

=
(

1 − exp
(

−
∫ t

0
λi1(τ |x(τ), νi1)

)
dτ

)
·

5∏
j=2

exp
(

−
∫ t

0
λij(τ |x(τ), νij)dτ

)
(2.7)
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where Tij only depends on νij and not νik, k ̸= j (see Appendix B.6 for further details).

The independence assumption might seem arbitrary, but we already control for much

observed variation and find very comparable estimates for a model without the random

effect (see Section 2.6.3). Hence, assuming a more complex correlation structure would

make interpretation harder while yielding similar estimates. Note that the final step in

(2.7) defines each marginal probability in terms of underlying hazard (cf. Putter et al.,

2007), implying the parameters of λi1,..,λi5 can be inferred from Si1 in the example.

Due to the separability of (2.7), we can apply the estimation procedure from Chapter

5: each transition has its own sub-log-likelihood, and the log-likelihood sums them.

By optimizing the sub-log-likelihood, we find the parameters for the particular λij .

The sub-log-likelihood contribution for λi1 would be the marginal density at Ti1, i.e.

ln
(

∂P(Ti1≤t | νi1,{x(s)}t
s=0)

∂Ti1

)
, because the latent transition time Ti1 is observed com-

pletely. The other hazard rates involve right-censored latent times Tij and have contri-

bution ln (P(Tij > t | νij , {x(s)}t
s=0)), representing survival beyond t.

We now turn to discuss the empirical challenges other than competing risks.

Right censoring - Tij can also be right-censored at study end on 01/01/2015. A

sub-log-likelihood contribution consists of a marginal survival probability then.

Left truncation and dynamic selection - Spells on no LTC use sampled on

01/01/2009 are left-truncated because of their ongoing duration t0 > 0. So, we observe

the marginal distribution conditional upon Tij > t0. Furthermore, observations at

t0 > 0 differ from the initial sample at t = 0 regarding frailty. Only observations with

favorable frailty, i.e. low νij , make it until t0, yielding observed frailty distribution:

Γ(νij | {x(s)}t
s=0, Tij > t0). Ignoring the dynamic selection implies underestimated γij

and attenuated βij (van den Berg and Drepper, 2016). To account for left truncation

and dynamic selection, we integrate each marginal distribution over its conditional frailty

distribution:

P(Tij > t|{x(s)}t
s=0, Tij > t0) =

∫ ∞

0

P(Tij > t|νij , {x(s)}t
s=0)

P(Tij > t0|νij , {x(s)}t
s=0)dΓ(νij |{x(s)}t

s=0), (2.8)
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where the denominator accounts for left truncation. In Section 2.6.3 we restrict estimation

to σ2
ij = 0 to assess the impact of ignoring dynamic selection on our estimates.

Time-varying covariates - The probability in (2.8) takes into account the entire

history of time-varying covariates {x(s)}t
s=0. While we ideally know the entire covariate

path, this is {x(s)}t
s=t0

for the left-truncated spells. We have to assume here that

{x(s)}t
s=0 = {x(s)}t

s=t0
, i.e. covariates are constant until t0. Identification under

milder assumptions has not been studied yet (see Chapter 5). Because we include many

covariates and frailty, and left truncation only happens to spells of no LTC use, we

believe the impact of missing information on βij is limited.

Repeated spells - Some individuals are repeatedly in a particular state, implying

transitions may be correlated across spells. We assume the random effect νij to be fixed,

so transition i → j is positively correlated across individual’s spells. Following Chapter

5, we slightly adapt the marginal distribution in (2.8) to account for repeated spells.

Repeated spells and time-varying covariates yield parameter identification similar to a

fixed-effects panel regression (van den Berg, 2001).

We refer to Chapter 5 and Appendix B.6 for further details on the complete sub-log-

likelihoods and model identification.

2.6 Results

2.6.1 Duration of (no) LTC use and the Subsequent Transition

Table 2.4 shows the estimation results of the non-parametric model presented in Section

2.5.1. Each row indicates a currently used LTC arrangement and need for care. The

first block of columns reports the duration of being in a particular state. We refer to

a single spell and do not accumulate all individual’s spells to have a lifetime duration.

The second block is a transition matrix and reports the long-run transition probabilities.

In addition, we show the probability of no transition, because our approximation of the

long-run is finite due to the study period ending in 2015.

The top row reports the statistics for individuals who never used LTC before. We



641784-L-bw-vdVaart641784-L-bw-vdVaart641784-L-bw-vdVaart641784-L-bw-vdVaart
Processed on: 13-5-2024Processed on: 13-5-2024Processed on: 13-5-2024Processed on: 13-5-2024 PDF page: 51PDF page: 51PDF page: 51PDF page: 51

2.6. Results 37

assume them to be without LTC since age 65. The median duration until a transition

is 14.55 years, meaning a median age at transition of 79.55 years (65+14.55). Most

individuals (71%) transition into home-based care rather than directly into institutional

care (15%). The other 14% pass away without using LTC. So, most individuals use LTC

at some point in life, and home-based care is likely to be the first LTC arrangement.

The second row provides the duration and transition from no LTC use if the individuals

used LTC before. For this sizable group of 628,320 individuals, we find shorter spells

than for those not using LTC since age 65 (17.5% of sampled individuals). The shorter

durations follow from that the individuals with past LTC use are on average older and

possibly frailer (they are on average 6.28 years older). In contrast, transition probabilities

do not differ between the two groups.

Turning to the duration of using home-based and institutional care, we compare spells

with a physical and cognitive impairment. The median and 75th percentile spell duration

are the longest for institutional care users with a high cognitive impairment. Their

median duration is 1.41 years, while the 75th percentile indicates that 25% have a spell

longer than 3.14 years. In contrast, their counterparts in institutional care with a high

physical impairment report a median and 75th percentile of 0.20 years and 0.86 years,

respectively. For a lower level of need and home-based care use, we report a similar

pattern of longer spells when having cognitive impairment.

Instead of comparing by health problem, we can also compare the duration of home-

based and institutional care. Given a low or high cognitive impairment, we report lower

median durations in home-based care than in institutional care. For individuals with

a physical impairment, we confirm this finding at the 75th percentile but not at the

median.

But which arrangement follows after the end of a spell? A first group transitions to less

specialized care. 37% and 25% of the low and high physically impaired in home-based

care have no LTC use as the next state. For institutional care users, we see a similar

pattern to less specialized care: 25% and 23% of the institutional care users with a low
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or high physical impairment transition to home-based care. We also report substantial

transition probabilities of going into more specialized care or death, i.e., the opposite

direction. 48% and 34% of home-based and institutional care users with a low physical

impairment transition to a higher level of need. Furthermore, 19% of the home-based

care users with a high physical impairment go into institutional care.

In contrast, transitions to more specialized care or death more frequently occur if

having a cognitive impairment. In home-based care, 49% with a low cognitive impairment

transition to a high cognitive impairment. 25% of them get another main health problem,

in particular a high physical impairment (not shown). Once having a high cognitive

impairment, 72% go from home-based to institutional care. In institutional care, they

either go from a low to a high need (62%) or die (81% with a high cognitive impairment).

To highlight the timing of a transition, Figures 2.2 and 2.3 plot time against the

transition probability of leaving home-based care or institutional care, respectively..

For this, we compare transition probabilities at t = 0.5 years and at t = 6, where the

probabilities at t = 6 are also reported in Table 2.4. Generally, we observe that most

transitions to less specialized care occur before time t = 0.5, whereas the transition to

more specialized care or death also frequently occurs after t = 0.5. To exemplify this,

consider those with a low physical impairment in home-based care. At t = 0.5, 33%

have moved to no LTC use, while this is 37% at t = 6. On contrary, 30% has a high

need at t = 0.5, increasing by 18 pp. to 48% at t = 6. This finding suggests that longer

spells mainly end up in more specialized care or death.
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Figure 2.2: Current Home-based Care Users: Transitions over Time by Arrangement
and Need for LTC
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Figure 2.3: Current Institutional Care Users: Transitions over Time by Arrangement
and Need for LTC
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2.6.2 Determinants of Transitions across LTC Arrangements

Table 2.5 shows the results for the transitions to more specialized LTC arrangements

for the mixed proportional hazard model (cf. Section 2.5.2). If someone never used

LTC before and has a healthy partner, the likelihood of going into home-based care

is at any time 45% ((1 − 0.55) · 100%) lower when compared to being single (column

1). This delay of home-based care use suggests possible informal care provided by the

healthy spouse. However, the effect shrinks to 21% if someone has ever used LTC before,

possibly because the (past) health problems are harder to cover with informal care.

Having a healthy partner delays institutional care use for home-based care users with

a high physical impairment. Surprisingly, it accelerates the use of institutional care for

those with a low or high cognitive impairment (hazard ratios: 1.82 and 1.19). Cognitive

impairments are different in that they could mean assistance with (cognitive) tasks

throughout the entire day, putting a large care burden on the spouse. In turn, the

partner might sooner alert the relevant authorities that institutional care is required. In

addition, singles lack that 24-hour assistance and only singles who can (partially) take

care of themselves use home-based care. As a consequence, the reference group contains

relatively healthy singles.

The risk of using more specialized LTC is higher if the partner already uses LTC; the

coefficients on ‘partner in home-based care’ and ‘partner in institutional care’ exceed

unit value (reference: having a healthy partner). Moreover, the largest coefficients are

found if the LTC arrangement at risk and partner’s arrangement are the same, implying

that couple members select into the same LTC arrangement. The individuals at risk

possibly provided informal care themselves and thereby faced the inherent emotional and

physical burden. In turn, their increased frailty exposes them to a higher risk on using

LTC. Also, the partner might provide less informal care due to own health problems.

Albeit weaker than the effect of having a healthy partner, having children also delays

the use of more specialized LTC. This suggests that children are a secondary source for

informal care provision. To see how much of the effect is driven by access to informal
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care, we split the effect by distance to the children and partner status (see Appendix

Tables B.7 and B.10). We test for the potential heterogeneity using a likelihood-ratio test

statistic χ2 reported in Table 2.5. For low and high physically impaired, having children

has a stronger delaying effect if the closest child lives in the same municipality rather

than in another municipality (further away). Also, for high physically impaired, the child

effect is stronger for singles than for those with a healthy partner, suggesting that sources

of informal care provision are substitutable. For the other transitions, i.e. different

needs, we find no evidence for substitutability between child- and partner-provided care.

Lastly, we see that being a homeowner or having more assets and income delays

transitions into more specialized care. The effect of being a home owner might in part

reflect a preference for aging in one’s own house. Furthermore, the impact of income

and assets indicate that individuals might look for private alternatives for formal LTC.

Table 2.6 shows the estimation results for a transition into less specialized arrangements

of LTC. In essence, the effects work in the same direction as in Table 2.5. While they

delayed the use of more specialized care, we find that a return to less specialized care is

accelerated when having a healthy partner, having children, being homeowner, having

higher income, and having higher assets. Again, the availability of informal care, a

preference for aging in one’s own house, and the affordability of private care can explain

these effects. Also, the signs on ‘partner in home-based care’ and ‘partner in institutional

care’ indicate that individuals (start to) use the same LTC arrangement as their partner.

The findings further highlight that having children significantly impacts the transitions

only if individuals have a low or high physical impairment. As these impairments possibly

involve treatable symptoms and curative care, and children’s caregiving skills can be

sufficient for a parent to return to less specialized care. In turn, cognitive impairments

probably require more skilled care that children less likely provide. Also, given the low

incidence, we will not further discuss the cognitively impaired.

Particularly, the effect of having children is stronger for singles and if the closest

child lives in another municipality (see Appendix Tables B.8 and B.11). We only see a
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significant and substantial distance effect for the transition from home-based care to no

LTC use. From the preceding analysis we know that the risk of going from no LTC use

to home-based care is higher if children live in another municipality. This could imply

that those individuals are less frail when entering home-based care and thus more likely

to return to no LTC use. For singles, the effect is stronger because the child is their

primary source of informal care.

Rather than across LTC arrangements, Table 2.7 presents the transition within an

arrangement of LTC, so from a low to a high need or vice versa.6 Columns (1) and (3)

suggest that a transition from a low to a high need in home-based care is delayed if

having a healthy partner (hazard ratios 0.91 and 0.96). While this could indeed reflect

informal care provision, we instead find that having a healthy partner accelerates a

transition from a low to a high need in institutional care (columns 5 and 7). This

contrasting finding may in part reflect selection into some arrangements (Table 2.5):

partnered individual could be frailer in LTC because they initially postpone the use

of more specialized arrangements. Consequently, the frail partnered individuals more

frequently transition to a higher need within their arrangement.

In fact, we can explain all covariate effects in Table 2.7 with this selection due to

observable characteristics. While we find evidence that having children delays LTC use

and that this fosters the use of less specialized arrangements, a child effect is insignificant

or reversed for transitions within arrangements. Similarly, the effect of income and

homeownership is mostly opposed to what we find for transition across arrangements.

Lastly, we find that duration dependence is negative for almost all transitions from

LTC use, implying fewer transition at longer durations, and positive for a transition from

no LTC use. Hiedemann et al. (2018) also documents the negative duration dependence,

which they call ‘inertia’. The duration dependence of LTC users is, however, positive if

they are high cognitively impaired home-based care users going into institutional care

(column (6), Table 2.5), which we can explain by their required 24-hours supervision,
6While reported for completeness, we do not further discuss transitions (4), (6) and (8) because of

low incidence.
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making them increasingly likely to transition over time. The duration dependence of no

LTC users who never used LTC reflects an age effect (see Section 2.6.1) and is positive

(column (1), Table 2.5): older individuals are more likely to start using home-based care.

2.6.3 Sensitivity Analysis

To assess the robustness of our findings, we consider how estimates are affected by

accounting for dynamic selection due to unobserved characteristics.7 To test for the

dynamic selection, we report for each hazard rate the estimated frailty variance σ2
ij and

accompanying likelihood-ratio test with H0: σ2
ij = 0. We report the model estimates

restricting σ2
ij = 0 in Appendix Tables B.16 to B.18.

Almost all frailty variances are significant, implying that there is unobserved hetero-

geneity and hence dynamic selection. For this, we compared the sub-log-likelihood of

the unrestricted model llur (σ2
ij ̸= 0) to that of the restricted model llr (σ2

ij = 0) using

likelihood-ratio statistic 2 · (llur − llr) a∼ χ2
1.8 We chose to control for dynamic selection

because its omission could lead to attenuated hazard ratios (i.e. closer to unit value) and

underestimated duration dependence γij (van den Berg and Drepper, 2016). However,

the hazard ratios with restricted σ2
ij = 0 are not substantially different (Appendix Tables

B.16 to B.18). We do indeed report higher values of γij , and duration dependence in

columns (2) and (6) of Table 2.5 even becomes positive if controlling for frailty.

The similar hazard ratios could be explained by our rich set of covariates, making

the role of frailty less important. This observation makes us confident that we properly

account for dynamic selection and do not have to allow more flexible (correlated) frailty

structures, making interpretation more complex but probably leaving results unchanged.

Another concern is assuming a baseline hazard function, which could affect hazard ratio

estimates. To investigate this, we estimate a Cox proportional hazard model with σ2
ij =

0, leaving the baseline hazard unspecified. We find similar results as before (Appendix

Tables B.13 to B.15). Hence, our results are robust to the Gompertz assumption. We

prefer our estimates because γij allows us to study the sign of duration dependence.
7Note that in Section 2.6.2 we rather discuss selection due to observed characteristics.
8For completeness, we also report the log-likelihood but do not use this for hypothesis testing.
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2.7 Discussion and Conclusion

We provide evidence on pathways within the Dutch long-term care (LTC) system, given

differences in the need for care, potential informal caregiving, and economic resources.

We novelly study the incidence and timing of transitions across LTC arrangements,

leading to insights that cannot be determined with cross-sectional (static) studies, i.e.

when LTC arrangements and personal circumstances are not allowed to change. For the

use of home-based or institutional care, we find that the duration is shorter if having

a physical impairment; also, the use of LTC when having a physical impairment more

often ends up in the use of less specialized LTC. We find that having a healthy partner

delays institutional care use for home-based care users with a physical impairment, but,

surprisingly, accelerates this for home-based care users with a cognitive impairment.

Also, we find that having more income and financial assets or an own house delays the

use of more specialized care and accelerates the use of less specialized care.

The ambiguous role of potential informal caregiving that we find is in line with prior

research. Bonsang (2009) documents that informal care provision substitutes formal

personal care at home, which we find for physically impaired. Our contrasting finding for

cognitively impaired aligns with other work documenting that informal care provision not

necessarily substitutes the use of more specialized institutional care (e.g., Bergeot and

Tenand, 2023). We highlight that the initial delay of home-based care use by partnered

individuals implies that they could be frailer when entering home-based care and thus

subsequently could go faster into institutional care than singles.

Further, our findings highlight a possible emotional and physical burden of informal

caregiving (for a review, see: Bom et al., 2019). First, as suggested by a weaker healthy

partner effect, informal caregiving seems harder if the individual without LTC use has a

past of LTC use. In addition, our findings reveal joint LTC use by partners, possibly

implied by the detrimental consequences of informal care provision on physical and

mental health outcomes. Lastly, because of their stronger effect on some transitions, we

implicitly show that children of singles are exposed to a larger emotional and physical
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burden of informal care provision. These findings opt for policy tailored to specific groups

of partnered individuals and children, e.g. by having specific care leave arrangements

that unburden children of a single parent.

Our results should be seen as associations rather than as causal effects of informal

care provision. In the analysis, we proxy for potential informal caregiving with marital

status and having children. This effect does not mean that the family actually provides

informal care because that is an individual decision. Instead, our estimates should be

seen as an intention-to-treat (ITT) effect and are a lower bound to the effect of actual

provision of informal care. Our large set of covariates and robustness checks make us

confident that we find the mentioned ITT effects and no spurious effects. We encourage

future research to shine more light on the causality and distinct channels behind our

results, e.g. by looking at the impact on LTC transitions of having a medical professional

in the family (Chen et al., 2022b).

Nevertheless, we can speculate on the broader implications of our findings on the

determinants of LTC use. First, considering the high-risk groups of using LTC, it could

be prudent to invest in informal care training for partners of cognitively impaired home-

based care users or to invest in home adaptions for singles without children enabling

them to age-in-place. Also, these individuals might be given priority on waiting lists for

institutional care. Furthermore, our established risk factors advocate for a broader risk

assessment of individuals not yet using LTC, e.g. by having algorithmic risk assessments

or preventive home visits to those being aged 80+ years old, which already exist in some

countries such as Denmark (Forebyggende hjemmebesøg, see: Vass et al., 2007). The

outcomes of the assessment can prevent unnecessary institutional care spells, prevent

other family members from being exposed to a period of stressful caregiving, and prevent

the healthy partner from ending up in LTC.

Also, our findings show ways to update existing LTC arrangements. First, delayed

institutional care use by homeowners provides scope to treat living in a public institution

and caregiving as separate arrangements. As already is the case in the Netherlands,



641784-L-bw-vdVaart641784-L-bw-vdVaart641784-L-bw-vdVaart641784-L-bw-vdVaart
Processed on: 13-5-2024Processed on: 13-5-2024Processed on: 13-5-2024Processed on: 13-5-2024 PDF page: 65PDF page: 65PDF page: 65PDF page: 65

2.7. Discussion and Conclusion 51

the elderly can then pay for living themselves, e.g. if wanting extra comfort in private

institutions, while the caring component is paid for by the government. However, there

should be enough places outside formal institutions where the care can be received,

especially for cognitively impaired which we find to have a longer lead time. Lastly,

more can be done to stimulate couples to age in place. A way to do so is to let them

pay a double co-payment if they receive care within a formal institution and a single

co-payment if they choose to receive this outside an institution. We encourage future

work to shine further light on these incentives to age-in-place.

To summarize, we show distinct pathways across LTC arrangements and find its

determinants, including having a cognitive or physical impairment, and availability

of informal care. Also, the role of informal care differs given a physical or cognitive

impairment. The findings advocate for a broad(er) risk assessment on the potential

use of LTC arrangements. This way, more risk groups for using LTC are identified and

policy can be developed that keeps public LTC systems viable in an era of aging.
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Chapter 3

Combining Insurance Against Old-Age Risks

to Accommodate Socioeconomic Differences

in Long-Term Care Use and Mortality
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3.1 Introduction

Within the context of aging societies, the proper design of old-age insurance systems

becomes increasingly salient. In private markets, a strong tendency to underinsure

longevity risk and the risk of needing long-term care (LTC) has been empirically observed,

often referred to as the annuity puzzle and LTC insurance puzzle, see Lambregts and

Schut (2020) for a review. Adverse selection is one explanation for the limited market

sizes, arising when those with above-average life expectancy more often buy annuities,

and those with high expected long-term care needs more often buy LTC insurance.1

Another explanation for the low demand for LTC insurance is the availability of informal

care from the spouse or other family members (Mommaerts, 2024). To reduce adverse

selection incentives, combining insurances to hedge long-term care- and mortality risks

when they are negatively correlated has been proposed.2 Despite its theoretical potential,

old-age insurances that combine LTC insurance with annuities are still not very common,

and its feasibility is poorly understood.3

This chapter quantifies socioeconomic and socio-demographic differences in long-term

care use and mortality and evaluates the implications for combined insurance against

these risks. We theoretically derive conditions for a combined insurance that minimizes

adverse selection incentives. We then quantify differences in long-term care use and

mortality employing a multi-state model using unique Dutch administrative data on

exposure to formal long-term care use and mortality risk of over 3 million individuals

aged 65 and above. Using these results we evaluate the factors that are important for a

combined life care annuity.
1Cf. Finkelstein and Poterba (2004). However, the size of adverse selection problems in the LTC

insurance market is subject to debates, cf. Brown and Finkelstein (2007), Brown and Finkelstein (2008),
and Boyer et al. (2020), among others. Most notably, preference heterogeneity – low risks have a
high preference for insurance – might even imply advantageous selection, cf. Finkelstein and McGarry
(2006). We assume homogeneous preferences in this chapter and take the positive correlation of private
information and insurance coverage as given.

2Murtaugh et al. (2001), Brown and Warshawsky (2013), Webb (2009), Solomon (2022),De Donder
et al. (2022).

3The American Association for Long-Term Care Insurance highlights the favorable experience with
LTC combination products over stand-alone LTC insurance; however, the number of policies sold remains
limited, see: https://www.aaltci.org/long-term-care-insurance/learning-center/ltcfacts-2019.
php and https://www.aaltci.org/linked-benefit-faqs/ [retrieved on: October 20th, 2023].

https://www.aaltci.org/long-term-care-insurance/learning-center/ltcfacts-2019.php
https://www.aaltci.org/long-term-care-insurance/learning-center/ltcfacts-2019.php
https://www.aaltci.org/linked-benefit-faqs/
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The point of departure for our study is the well-known socioeconomic gradient in

longevity, according to which individuals with lower income die earlier than those with

high incomes, cf. Deaton (2002). For long-term care use, low income individuals tend

to be less healthy at older ages and require more LTC. Both of these socioeconomic

gradients are significantly affected by gender and marital status. Importantly, the

socioeconomic gradients and its heterogeneity greatly matter for the design of insurances.

The implications apply to both private and public insurance systems.

For public social security, socioeconomic differences in mortality imply a redistribution

of benefits from lower incomes, who die early, to higher incomes, who receive benefits

for a more extended retirement period.4 In private insurance markets, the implied

differences in premium returns followed by inequalities in mortality can yield adverse

selection problems. Pricing at average life expectancy would imply an actuarially unfair

premium for higher income individuals, contributing to under-annuitization (Brown and

Finkelstein, 2008). The picture is reversed for LTC insurance. Here, individuals with

lower income tend to require more long-term care. This gradient imposes an opposite

redistribution of benefits via LTC insurance from higher to lower income individuals

in public insurance systems. In a private insurance market, medical underwriting and

potentially low take-up rates of private LTC insurance might be the consequence (Braun

et al., 2019). The negative correlation between longevity and long-term care needs

implies that individuals with lower incomes are seen as lower risk types in the annuity

market and higher risk types in the LTC insurance market, with the opposite for high

income individuals. From a private insurance perspective, combining the two insurances

to hedge these risks is appealing to reduce adverse selection problems.

In our study, to understand the implications of socioeconomic and socio-demographic

differences in long-term care use and mortality for combined old-age insurance, we extend

the standard adverse selection model of Einav et al. (2010). We formally derive an optimal
4For the US social security system, Groneck and Wallenius (2021) show that the (intended) progres-

sivity turns regressive once the differences in life expectancy over socioeconomic status are considered.
In Chapter 4, we quantify the welfare effects of social insurance programs stemming from inequalities in
long-term care needs and mortality in a dynamic structural model.
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combination of LTC insurance and pension annuity that minimizes adverse selection.

More specifically, we obtain an expression showing how the optimal combination of

insurance depends on three factors: (1) the mean duration in each of the two states

‘no-long-term care use’ and ‘long-term care use’, (2) the variances of money’s worth for

stand-alone LTC and annuity insurance over individual types, and (3) the correlation

between the money’s worth of the two insurances.

Next, we establish stylized facts on the socioeconomic gradients in longevity and LTC.

We estimate the joint distribution of long-term care use and remaining life expectancy

at age 65 by lifetime income, gender, and marital status. Exploiting rich administrative

data provides us with sufficient observations also for the oldest-old, which is crucial

for reliably estimating long-term care incidences. We develop a multi-state model and

employ a recently developed method to estimate the underlying mixed proportional

hazard rates (Chapter 5), incorporating frailty and allowing for time-varying covariates

to capture the transition from being married to a single-person household.

We study the impact of these estimates for the design of insurances. We quantify

adverse selection incentives for stand-alone pension annuity and LTC insurance measured

as any deviation of the individual risk from actuarial fair pricing (i.e., non-zero premium

returns). We then analyze the optimal combination of the insurances that minimizes

adverse selection stemming from socioeconomic and socio-demographic inequalities. Our

results allow us to understand the feasibility of combined old-age insurance for different

socioeconomic groups and its determinants.

We have two main contributions. First, we establish new stylized facts simultaneously

documenting a positive gradient in longevity and a negative gradient in long-term care use

over lifetime income. We highlight to what extent informal care possibilities – proxied by

having a spouse – affect these differences. Previous literature has studied this in isolation

and focused on formal care only (cf. Kalwij et al. (2013) and Rodrigues et al. (2018),

for example). Second, we theoretically and empirically study the optimal combination

of insurances by determining the optimal specific benefit level for each future state of
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the world. Two additional factors – the relative duration and the heterogeneity in risks –

are shown to be important for a combination of insurances, next to the the well-known

negative correlation of risks. We further emphasize the need for group-specific premia to

reduce adverse selection problems. Previous literature studied given insurance products

(e.g. Murtaugh et al., 2001) and focused on the negative correlation between risks as the

precondition for a successful combination, cf. Webb (2009), Solomon (2022).

We find substantial socioeconomic inequalities in long-term care use and mortality.

The difference in remaining life expectancy at age 65 between the bottom and the top

lifetime income quintile is 4.0 years for men and 2.3 years for women. Women in the

bottom income quintile spend an additional 1.7 years in long-term care after age 65

than those in the top income quintile, while for men, this difference is 1.1 years. Hence,

gender matters for the income gradient, which is stronger for men in terms of mortality,

but stronger for women in terms of long-term care. Regarding informal care possibilities,

proxied by having a spouse, being married reduces long-term care duration by 22% for

men and it substantially flattens the socioeconomic gradient. At the same time, this is

far less pronounced for women, potentially due to the high likelihood of outliving the

spouse.

The implied consequences for valuing insurances show for LTC insurance a large

positive premium return of +30 percent for the lowest income quintile and a negative

premium return of –17% for the highest income. The gradient of the premium returns

for annuities is reversed but flatter and ranges from –9% to +4% for the lowest and the

highest income quintile.

Guided by our theory we determine the optimal combination of annuity and LTC

insurance. Combining both insurances reveals that this is unfeasible with a uniform

premium for everyone due to large gender-differences in long-term care use and mortality

and a positive correlation of premium returns over gender. Group-specific premia yield

large differences for the optimal insurance products over gender and marital status. Our

results suggest that a life care annuity seems feasible for single men and women but less
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so for married men and women, due to unfavorable variances and correlations of the

risks for these groups.

Our analysis is not limited to a combination of annuities and LTC insurance but

holds more general for any bundling of insurances. Bundling risks in insurances is a

widespread practice ranging from life-insurance with LTC-rider to home-car insurances,

see Eling and Ghavibazoo (2019) and Solomon (2022) for further examples of combining

insurances. Our results can help guiding the design of such bundled insurance products

and inform about its feasibility to reduce adverse selection problems.

The remainder of the chapter proceeds as follows. The following Section 3.2 gives

a brief literature review. Section 3.3 presents the theoretical model and Section 3.4

describes institutional details, the data, and the empirical approach. Section 3.5 presents

the results, Section 3.6 discusses the main results and Section 3.7 concludes.

3.2 Literature

This chapter combines three related strands of literature studying (1) the causes of the

annuity- and LTC insurance puzzles, (2) the potential to bundle insurances, and (3) the

estimation of socioeconomic and socio-demographic differences in long-term care and

mortality.

This chapter focuses on adverse selection and informal care possibilities as two factors

affecting the low demand for annuities and LTC insurance. However, many other

explanations for the so-called annuity- and LTC insurance puzzle have been put forward.

Most notably, the risk for high out-of-pocket expenses for health-related expenses and

bequest motives imply a tendency to hold sufficient liquid assets to prevent hitting the

borrowing constraint, which implies low annuitization, cf. Lockwood (2018), Ameriks

et al. (2018). Davidoff (2009) point to the importance of home equity, which can

serve as a substitute for annuities and LTC insurance to some extent. Reichling and

Smetters (2015) emphasize the role of correlated risks introduced via health shocks

that simultaneously affect longevity and uninsured medical costs as a source for low

valuation of annuitization. Pauly (1990) and Zweifel and Strüwe (1998), and more
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recently, Mommaerts (2024) and Coe et al. (2015) stress the importance of informal care

availability for the low demand for private LTC insurance.

Most related to our approach are studies evaluating loads or the money’s worth

of insurance, which we will also apply in our analysis to evaluate adverse selection

problems. Brown and Finkelstein (2007) find significant loads in the long-term care

insurance market pointing to actuarial unfair pricing which varies by demographic and

socioeconomic characteristics. Brown and Finkelstein (2008) determine large differences

in the willingness to pay for insurance in a life cycle setting given the current government

welfare system between insurances with these loads or without. Similarly, Mitchell et al.

(1999) estimate the willingness to pay for actuarially fair pricing in the annuity market

using a money’s worth concept.

Theoretically, the extension of the standard adverse selection model to multiple risks to

compare separate versus ‘umbrella’ contracts has been studied by Fluet and Pannequin

(1997) focusing on the relationship between partial coverage and low-risk exposure

under multiple risks, Gollier and Schlesinger (1995) analyzing the optimal structure

of deductibles , and Picard (2020) studying optimal risk splitting in multidimensional

screening models. Webb (2009) and Solomon (2022) investigate life care annuities

directly. Webb (2009) sets up an adverse selection model in the presence of preference

heterogeneity and unfair pricing, showing that the bundled product can be welfare-

improving. Closely related to our theoretical model is Solomon (2022), who shows that

the correlation structure and whether selection is adverse or advantageous are the key

elements for the welfare effects of bundling. Solomon (2022) does not analyze an optimal

combination of insurances, though.

Murtaugh et al. (2001) and Brown and Warshawsky (2013) have empirically studied

the attractiveness of life care annuities relative to single products by determining

how a combined product can be offered with a lower premium and less strict medical

underwriting to attract more people. De Donder et al. (2022) show that a life care

annuity can yield advantageous selection solely assuming differences in agent’s risks.
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This chapter also relates to the literature studying socioeconomic differences in

mortality and long-term care. Pijoan-Mas and Ríos-Rull (2014) provide age-specific

estimates for the negative relationship between mortality and socioeconomic status.

Kalwij et al. (2013) also estimate longevity differences over income and gender using

Dutch administrative data and report similar results to what we find. Similarly, a negative

relationship between long-term care needs and long-term care use and socioeconomic

status has been documented (Ilinca et al., 2017; Rodrigues et al., 2018; Garcia-Gomez

et al., 2019; Tenand et al., 2020a). These findings align with the well-documented

gender-health paradox, stating that women indeed do live longer but tend to be less

healthy (Case and Paxson, 2005; Oksuzyan et al., 2008).

3.3 Adverse Selection Model with Multiple Risks

We extend the model of Einav et al. (2010) to describe how adverse selection for a

stylized stand-alone annuity and LTC insurance can be reduced by a combined life

care annuity and show that this insurance is welfare-increasing.5 A precondition for

this to work is a negative correlation between long-term care- and survival risk. We

then use this simple framework to derive an optimal combination of the two insurances,

allowing us to single out its determining components. We focus on comparing a world

with single insurances to a world of a bundled product, which enables us to derive

an optimal bundling in the sense that adverse selection problems are minimized. We

abstract from multiple important aspects – such as screening, partial insurance, and the

choice between stand-alone and bundled insurance – so that our simple model allows us

to focus on optimally combining the two insurances and study the drivers of the optimal

combination.

Suppose there is a continuum of individual types ξ ∈ Ξ with distribution G(ξ) who live

for two periods. They differ by their probabilities of survival s(ξ) and probability q(ξ)

to become in need of long-term care associated with costs of X. The probabilities are
5See also Einav and Finkelstein (2023), the ‘self-indulgent’ survey describing the recent studies using

the Einav-model.
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private information. Individuals receive utility U from consumption and are risk-averse

with with U ′ > 0, U ′′ < 0 . Lifetime utility6 is:

V = U(C1) + s(ξ) ·
{

{1 − q(ξ)} · U(Ch
2 ) + q(ξ) · U(Cl

2)
}

= U(C1) + {s(ξ) − l(ξ)} · U(Ch
2 ) + l(ξ) · U(Cl

2), (3.1)

where Ch
2 is consumption when healthy and Cl

2 is consumption when in need of long-term

care at date t = 2, and l(ξ) = s(ξ) · q(ξ) is the unconditional probability of becoming in

need of long-term care. In line with our later empirical results, we assume that individual

types that live longer spend shorter time in long-term care, so that Corr(s(ξ), l(ξ)) < 0.

3.3.1 Stand-alone Annuity and LTC insurance

We first study two stand-alone contracts k = {A, L} of an annuity A and a LTC insurance

L. Individuals have initial wealth Wt in both periods t = 1, 2 where W1 > W2. In period

1 the agent can buy annuity insurance at premium PA paying a benefit Υ in t = 2 in

case of survival, and LTC insurance at premium PL that covers long-term care costs X

in the event of poor health at old age. Hence, the benefit is B = {Υ, X} under each

insurance. There are no savings in the model so the budget constraint in period 1 is

given by C1 = W1 − PA − PL. In period 2, the agent can consume W2 + Υ in both states

if insured. If uninsured, the agent has Ch
2 = W2 if surviving healthy and Cl

2 = W2 − X

if surviving in need of long-term care.

Rational individuals make a binary choice to buy insurance or stay uninsured, taking

the other insurance as given.7 Comparing the expected utility from being insured with

the value from staying uninsured, we can derive the willingness to pay π(ξ, k) (WTP) for

an insurance for each type. With this, define aggregate demand Dk(Pk) for insurance

k as the mass of types whose willingness to pay exceeds the uniform price Pk for the
6Note, we assume homogeneous preferences implying that the only heterogeneity between households

are the two risks.
7When studying one insurance, we assume that the respective other risk is fully insured so that we

only have two groups: insured and uninsured agents. Solomon (2022) provides an extension where
agents can decide to buy either insurance, both insurances or to stay uninsured. The main results are
not affected by our simplifying assumption.
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insurance product:8

Dk(Pk) =
∫

Ξ
1(π(ξ, k) ≥ Pk)dG(ξ). (3.2)

Risk-neutral insurers have to cover only the costs c(ξ, k) for each insured individual

and compete in a Bertrand game over the price of the product. Firms cannot observe

individual risk and have to price insurance based on an average risk type and cost ACk.9

The distinguishing feature of the adverse selection model relative to the standard supply

and demand model is that supply is not determined with an independent production

technology. Instead, the average cost curve –the supply curve– ACk is given by

ACk(Pk) = 1
Dk(Pk)

∫
Ξ

c(ξ, k) ·1(π(ξ, k) ≥ Pk)dG(ξ) = E {c(ξ, k)|π(ξ, k) ≥ Pk} , (3.3)

which is determined by the types who choose to buy insurance.

The marginal cost curve in the market is given by MCk(Pk) = E {c(ξ, k)|π(ξ, k) = Pk},

and it is downward sloping so that marginal costs increase in price and decrease in

quantity. This shape is generated by the fact that individuals with the highest willingness

to pay for insurance are also those with the highest expected costs, but the type ξ is

private information. Further, due to agents being risk-averse, the marginal cost curve

locates below the demand curve.

Zero profit implies that the equilibrium insurance premium equals the average costs

of the entire risk pool willing to buy the insurance at the given premium, so the firms’

information problem implies welfare losses relative to a world with complete information.

Panel (a) in Figure 3.1 provides a stylized graphical representation of the welfare losses

in a market for the stand-alone insurances.10 In our example, the WTP curve is always
8See Appendix C.3 for the derivation of the demand- and WTP-curve for our two period model and

accompanying comparative statics on the slope of the demand curve.
9Besides this adverse selection, we abstract from any other friction like, e.g., moral hazard. Firms

are also not allowed to compete on the coverage features as in Rothschild and Stiglitz (1976) type
models. Webb (2009) explicitly shows in this setup that bundling an annuity and a LTC insurance with
negatively correlated risks for these states is a Pareto improvement.

10Linear demand and supply curves arise if the probabilities are uniformly distributed, which is assumed
for the following analysis. Non-linearities, in contrast, arise from normally distributed probabilities.
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above the MC curve due to the assumed risk-aversion, implying that agents always

prefer being insured when pricing is at marginal costs. Due to asymmetric information,

pricing occurs at average costs. Hence, the equilibrium price is in point B, where the

willingness to pay of a new –lower-cost– individual no longer exceeds the average cost of

the existing insurance pool. It is optimal for the marginal consumer to remain uninsured.

The welfare loss due to asymmetric information is the deadweight loss ABCD, which

equals the sum of risk premia of uninsured individuals who are willing to pay a positive

risk premium.

Figure 3.1: Adverse Selection Effects with Different Cost Patterns
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The slope of the WTP curve is determined by the dispersion of types in the economy: a

high willingness to pay for insurance implies a high underlying risk and vice versa. What

happens if the heterogeneity in risk decreases? A lower dispersion in costs, V ar(c(ξ, k)),

flattens the WTP-, and the two cost curves. The willingness to pay across agents, as

well as their costs, become more aligned. In effect, more agents would be insured (point

B would move to the right), and the dead weight loss would decrease. Panel (b) Figure

3.1 depicts the extreme case without dispersion, V ar(c(ξ, k)) = 0. With all individuals

facing the same expected costs the demand- and supply curves become linear. Average

costs are equal to marginal costs but below the WTP-curve due to the risk premium
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that agents are willing to pay. In that case, the first-best optimum of full insurance in

point A = B is possible for every risk-averse individual because asymmetric information

no longer plays a role.

Of course, assuming risk-averse agents implies that agents would buy insurance even

with a negative return on the insurance due to a positive risk premium that they are

willing to pay. This means that the first best allocation is already achieved in this

model before adverse selection is completely eliminated. In fact, reducing V ar(c(ξ, k))

to the point where the WTP curve is above the AC-curve for all agents in Panel (a) of

Figure 3.1 is enough to ensure full insurance. When studying an optimal comination of

insurances, we will use the objective to minimize the variance in costs to get results that

are independent of household preferences to simplify the analysis.

3.3.2 Optimal Combined Insurance

The Life Care Annuity In a combined insurance product, the life care annuity CA,

agents can pay the premium PCA that pays out the annuity Υ if the agent survives with

probability s(ξ)− l(ξ) and is healthy, and the payout is (1+ρ)Υ if the agent survives but

needs long-term care with probability l(ξ).11 The general idea is to hedge the two risks

when Corr(s(ξ), l(ξ)) < 0 to attract a higher number of people choosing this insurance.

Assume an individual with a high risk for annuities (high life expectancy), implying high

costs, and simultaneously with a low risk of long-term care, implying low cost for LTC

insurance. A second agent has low life expectancy and high long-term care risk, implying

the reversed costs for the two insurances. The variation in the cost, V ar(c(ξ, k)) ̸= 0,

implies adverse selection problems for stand-alone products. However, combining the

two insurances hedges the risks and aligns the costs of these two agents. In the optimal

outcome, the costs of the agents are equal, i.e., c(ξ, k) = c and V ar(c(ξ, k)) = 0, which

eliminates the adverse selection problem and makes the first best allocation feasible in

our simple model so that everyone is insured, cf. Figure 3.1(b).
11We assume that stand-alone insurance is unavailable when studying combined insurance. This

could be labeled as the ’managed competition’ case – cf. Solomon (2022) – where a regulator, or market
designer does not allow single insurance contracts.
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Optimal Combination of Insurance We aim to determine a contract of a combined

insurance that maximizes the fraction of insured agents by minimizing adverse selection.

This can be achieved by the appropriate choice of ρ, which governs the relative size

of the benefit in each state. Note that the benefit in case of LTC is then no longer

restricted to be capped by the long-term care costs X, but we rather allow for arbitrary

top-up values ρ, which might exceed the costs. The optimal size of the top-up ρ that

minimizes adverse selection in this model is reached if expected individuals’ cost are

homogeneous for all types ξ:

E (c(ξ, CA, ρ)) − c = 0. (3.4)

Consider a simple example with only two types ξ = (1, 2). To equalize benefits,

the benefit level ρ needs to be chosen such that condition (3.4) is met for both types,

implying that their costs are equal:12

c(1, CA, ρ) = c(2, CA, ρ) =⇒ s(1) · Υ + l(1) · ρ · Υ = s(2) · Υ + l(2) · ρ · Υ,

Solving for ρ gives:

ρ = s(2) − s(1)
l(1) − l(2) .

Obviously, ρ > 0 if s(2) > s(1) and l(1) > l(2), or vice versa: the time in long-term care

l(ξ) and remaining life expectancy s(ξ) have to be negatively correlated to sustain a

positive LTC insurance benefit.

If there are infinitely many types, there is no closed-solution possible, and we have to

bring the average cost c as close as possible to individual expected cost. We do this by
12See Appendix C.3 for comparative static on how the slope of the demand curve changes if the

correlation between s(ξ) and l(ξ) becomes more negative.
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minimizing the squared difference of (3.4):13,14

min
ρ

F(ρ) = E
{

s(ξ) + l(ξ) · ρ

E(s(ξ)) + E(l(ξ)) · ρ
− 1
}2

= E
{

PR (ξ, ρ)2
}

= V ar {PR(ξ, ρ)}

with

PR(ξ, ρ) = s(ξ) + l(ξ) · ρ

E(s(ξ)) + E(l(ξ)) · ρ
− 1. (3.5)

In the multi-period framework, s(ξ) represents the remaining life expectancy and l(ξ),

the unconditional remaining lifetime spent with long-term care needs. PR in Equation

(3.5) is the premium return of the life care annuity, defined as the difference between

the ratio of expected (present) value of benefits relative to its premium. An analogous

concept of money’s worth was suggested by Mitchell et al. (1999) and used by, e.g.

Finkelstein and Poterba (2004) and Brown and Finkelstein (2007).15 In the model

discussed above, the expected value of benefits for each type is s(ξ) + l(ξ) · ρ. The

uniform premium in a competitive market is given by PCA = E(s(ξ)) + E(l(ξ)) · ρ which

is the denominator of Equation (3.5). A value of unity implies a premium return of zero:

the pricing of the insurance is then actuarial fair with premia equal to the expected

value of benefits. Our objective function aims to minimize the variance in premium

returns, implying as little heterogeneity in marginal cost as possible. It is important to

note that our objective is to minimize welfare loss due to adverse selection. We leave

the explicit modeling of the choice of different insurance contracts for future research.

Deriving the first-order condition from the optimization problem (3.5) and solving for

the optimal top-up ρ yields our main result:16

13Without affecting our main results, we divided the objective function by c so that we can express it
in terms of premium returns to get a better intuition for the results.

14We here assume a real interest rate of zero so that the time value of money does not play a role in
the model.

15The money’s worth used by Finkelstein and Poterba (2004) is defined as the expected present
discounted value of annuity payouts divided by the initial premium. In our terminology, this could be
defined as the premium return plus one, equal to one if the benefits align with the premium.

16Appendix C.4 provides the derivation.
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ρ⋆ = E(s(ξ))
E(l(ξ)) ·

SD
{

s(ξ)
E(s(ξ))

}
SD
{

l(ξ)
E(l(ξ))

}−Corr
{

s(ξ)
E(s(ξ)) ,

l(ξ)
E(l(ξ))

}
{

SD
{

s(ξ)
E(s(ξ))

}
SD
{

l(ξ)
E(l(ξ))

}}−1

−Corr
{

s(ξ)
E(s(ξ)) ,

l(ξ)
E(l(ξ))

} , (3.6)

where s(ξ)
E(s(ξ)) and l(ξ)

E(l(ξ)) can be interpreted as the money’s worth of the stand-alone

insurances, i.e. one plus the premium return, for the stand-alone annuity-, and LTC

insurance, respectively. The optimal size of benefit in long-term care relative to not in

long-term care, ρ⋆, depends on three main elements: (1) the relative duration in each

state, E(s(ξ))
E(l(ξ)) , (2) the relative standard deviations of the money’s worth for stand-alone

LTC- and annuity insurance,
SD
{

s(ξ)
E(s(ξ))

}
SD
{

l(ξ)
E(l(ξ))

} , and (3) the correlation of the money’s worth

of the two stand-alone insurances, Corr
{

s(ξ)
E(s(ξ)) , l(ξ)

E(l(ξ))

}
.

The relative duration in each state, i.e., the expected life expectancy relative to the

expected duration in need of long-term care, has a proportional impact on ρ∗. Assuming

the relative standard deviations to be one and a perfectly negative correlation, the

intuition is straightforward. Let life expectancy be two times higher than the time spend

in need of long-term care so that E(s(ξ))
E(l(ξ)) = 2, then the level effect of optimal condition

(3.6) implies that the top-up of LTC benefits must also be twice as high compared to

the state when not in need of long-term care (ρ∗ = 2) to eliminate the differences in

premium returns.

The second factor is a measure for the heterogeneity in risks and can be interpreted

as the heterogeneity in the money’s worth in each stand-alone insurance. In effect, this

measure is an indication which of the two insurances suffer from more severe adverse

selection problems. In Section 3.3 we showed that decreasing heterogeneity in types

also decreases the deadweight loss. A value above one implies that the heterogeneity in

premium returns is larger for an annuity whereas this is reversed if this ratio is smaller

one. The impact of this factor on the optimal combination of the two insurances is

again straightforward. Assuming a relative duration of 1 and again a perfectly negative

correlation, we also have a proportional effect on ρ∗. If the heterogeneity in premium
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returns is twice as large when in need of long-term care so that
SD
{

s(ξ)
E(s(ξ))

}
SD
{

l(ξ)
E(l(ξ))

} = 0.5, then

the implied top-up is given by ρ∗ = 0.5. The intuition is that the optimal combination

of the two insurances implies that a higher benefit should be granted in the state where

heterogeneity in risks is lower. Finally, note, that taken both factors together assuming

a perfectly negative correlation simply consist of the product of the two:

ρ∗
Corr=−1 = E(s(ξ))

E(l(ξ)) ·
SD
{

s(ξ)
E(s(ξ))

}
SD
{

l(ξ)
E(l(ξ))

} . (3.7)

This equation shows that the two factors can offset each other: following the example

above, if there is more heterogeneity in long-term care risk but the duration is shorter

than surviving healthy, then it might be optimal to combine an annuity and a LTC

insurance and pay out the same benefit in both states, i.e., ρ∗ = 2 · 0.5 = 1.0.

The third factor measures the correlation between the money’s worth of the two

stand-alone insurances. When the risks – and hence the premium returns of the stand-

alone insurances – are not perfectly negatively correlated, the combination of the two

insurances can only partially eliminate adverse selection incentives. The risks cannot

be perfectly hedged and there are remaining differences in the premium returns in a

combined insurance. Besides, a correlation between [−1, 0] reinforces Equation (3.6)’s

first two effects on the optimal top-up ρ∗ in both directions. Hence, a lower correlation

in absolute terms yields a positive (negative) effect on ρ∗ if the ratio of the standard

deviation (factor 2 in Equation (3.6)) is larger (less) than one.

Bringing the Model to the Data In our empirical section, we will elaborate on the

quantitative importance of the effects described above for the different groups ξ, which

we will specify as quintiles of lifetime income, gender, and marital status. Section 3.5

shows results for premium returns over lifetime income quintiles. We will label the slope

of the line connecting the premium returns over income quintiles as gradients, referring

to the well-known socioeconomic gradient in mortality discussed in the health-economics
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literature, see, e.g., Dow and Rehkopf (2010). Factor two in Equation (3.6) – the ratio of

the standard deviations – is a measure for the sign and the steepness of these gradients.

In contrast, the correlation can be seen from the shape of the premium returns over

income and their relative (opposing) slopes: two linear and opposing slopes indicate a

high negative correlation.

We further assume that agents can purchase insurance by paying a lump-sum premium

Pk at (initial) age 65, priced at the average risk. We estimate the quantities s(ξ) and l(ξ)

with our multi-state model. We discretize type distribution G, by taking the empirical

probability of observing the type ξ at age 65. This also allows us to calculate the

population’s remaining life expectancy E(s(ξ)) and the unconditional time spend in

long-term care E(l(ξ)).

3.4 Data and Empirical Approach

3.4.1 Institutional Context

The Netherlands has a universal and generous pension and long-term care system. The

pension system consists of a tax-funded minimum social security benefit (first-pillar)

that is paid from the statutory retirement age to each Dutch citizen with a required

minimum time living in the country. This AOW (Algemene Ouderdomswet) pension

is complemented with a (second-pilar) occupational defined benefit pension, which is

mandatory (self-employed excluded) and based on lifetime earnings. The replacement

rate is quite high, reaching around 70% of average lifetime earnings (Knoef et al., 2017).

The public long-term care system provides coverage for both formal long-term care at

home and in a nursing home. Unlike the U.S., private LTC insurance and out-of-pocket

expenditures are marginal, being less than 0.5% of total long-term care expenditures

(Colombo et al., 2011). Everyone who lives in the Netherlands is insured and pays

income-dependent premia. Total long-term care expenditures are 4.1% of GDP and

among the highest of OECD countries (European Commision, 2015). Every request

for long-term care is assessed by the Centre for Care Assessment (CIZ), taking into
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account the usual informal care that partners or other household members give to each

other (Mot, 2010). Nursing home care is available for individuals with more severe

conditions or a less supporting environment. However, individuals may also choose to

receive personal care at home. When getting personal care at home, the partner is

expected to provide the usual domestic and supportive care. Individuals are entitled to

less personal care when the partner voluntarily provides personal care (Mot, 2010; Bakx

et al., 2015). In 2015, a major long-term care reform has been implemented, reducing

coverage and increasing co-payments. In the new system, only people who need care

day and night are entitled to care in a nursing home. For people with lighter care needs,

personal care at home is no longer publicly insured (Maarse and Jeurissen, 2016).

Overall, the Netherlands stands out from other OECD countries in old-age social

insurance by providing an almost universal public long-term care scheme with generous

coverage, which implies low out-of-pocket expenses so that adverse selection problems

for using long-term care are arguably low. Eligibility rules depending on informal care

availability also suggest low selection effects into long-term care. These institutional

factors allow us to estimate arguably unbiased socioeconomic differences in long-term

care use and mortality.

3.4.2 Data and Sample Selection

We use administrative data for the Netherlands containing detailed longitudinal infor-

mation on formal long-term care use and mortality (exact date of death) for the entire

population. Administrative data on formal nursing home care and home care is obtained

from the Central Administration Office (CAK). These data cover all residents of the

Netherlands aged 18 and older who have long-term care expenses that are covered by

the public long-term system. Data on mortality is obtained from the causes of death

registry. In addition, we use detailed income and assets data from tax registries to

measure socioeconomic status. Demographic characteristics, including age, gender, and

marital status are obtained from the municipality population register.

While the long-term care use data are available since 2004, we use them starting in
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2006 when also assets data are available to determine socioeconomic status. Our study

ends in 2014 before the major reforms of the long-term care system were implemented.

We include retired individuals aged 65+ and their partners whose main source of income

is pension income. We exclude individuals if they are not registered in the Netherlands

for the entire sample period. Further, we exclude households remarrying or divorcing

after age 65 (4.5%). We exclude a few households with negative income or assets

and those with missing data (0.2%). This leaves us with a final sample of 3,219,297

individuals in 2,198,755 households.

3.4.3 Variables

Formal long-term care use is defined broadly, including institutionalized and home care.

Institutionalized care comprises nursing home care and psychiatric or disabled care.

For our sample, nursing home care covered about 93% of institutionalized care in 2006.

Home care use is defined as receiving personal care, such as help with daily activities

(ADL), and nursing care, such as wound dressing. We do not include domestic care. For

institutionalized care, we measure each spell’s starting and end date; for home care we

measure the spells on a 4-week basis after 2008 and until 2008 as the first and last day

of use in the year.17 We excluded spells where home care was provided for less than one

hour during the year.

For the covariates, marital status is defined as being in a couple (married, a registered

partnership, or cohabiting) or a single-person household. Socioeconomic status is

measured by average retirement income, which is the sum of personal gross income

(deflated using CPI) – and for couples, its sum – and the annuity value of household

financial assets. As our sample contains retired individuals only, average retirement

income provides a good proxy for lifetime income. To compute the annuity value of

household assets, we follow Knoef et al. (2016), see Appendix C.1 for details. Household

financial assets are particularly important to include as a source of retirement income

for former self-employed individuals. Retirement income is equivalized using OECD
17For 2008, each spell’s start and end date is marked by the start and end of the calendar year.
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scales to make couples and single-person households comparable regarding retirement

income. Based on this measure, we construct lifetime income quintiles.

3.4.4 Multi-State Model

We use a multi-state model to estimate lifetime long-term care use and remaining life

expectancy at age 65 for different groups h ∈ H (lifetime income quintile, gender, initial

marital status at age 65). The model has three states (no long-term care use, long-term

care use, and death) with transition rates λk(t), and individuals can repeatedly visit

the states (both in the model and data). To estimate the transition rates we apply a

competing risk analysis, i.e. we take into account that only one of two possible transitions

takes place, leaving the other transition unobserved. We assume the transition rates

to be independent in terms of unobservable characteristics, so the transition rates can

be separately estimated per state using a mixed proportional hazard (MPH) model

(Hougaard, 2000; van den Berg, 2001):

λk(t, marstati(t); νk
i , γk, βk) = λ0(γk, t) · ϕ(βk, marstati(t)) · νk

i , (3.8)

where λ0(γk, t) = exp{(γk + γkh) · t} is the baseline hazard capturing age-specific

transition rates for each state and group, with t as the age-indicator. The parameter γkh

captures the difference in the age-specific transition rates over groups. The advantage

of using age as a time scale is that we abstract from unknown information regarding

some individuals’ beginning of the no-long-term care use or long-term care use spell.

Otherwise, we should have imputed the starting dates or excluded these left-censored

spells18, which might result in biased estimates because of an initial conditions problem

Heckman (1981). We assume a Gompertz functional form for the baseline hazard, which

is a common specification for adult mortality in developed countries (see e.g. Missov

et al., 2015).

The second term of the model, ϕ(βk, marstati(t)) = exp{ βk+β1kh+β2khmarstati(t)},

includes current marital status (for initially married couples) as a time-varying covariate

to capture the transition from being married to a single-person household. Moreover,
18Contrary to left-truncated spells, left-censored spells have an unknown start date.
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it captures differential mortality and differences in informal care possibilities between

singles and couples. The parameter β1kh measures the difference between initial singles

and initially married individuals who have become single, and β2kh picks up the additional

impact of becoming single while currently married.

The third term of the MPH model νk
i ∼ Γ

(
1

σ2
k

, 1
σ2

k

)
is an individual-specific random

effect accounting for dynamic selection and other unobservable differences between

individuals, for instance, factors explaining mortality among the oldest old and the

mortality plateau (see e.g. Vaupel et al., 1998; Barbi et al., 2018). We assume this

so-called frailty term to follow a Gamma distribution because it well describes observed

heterogeneity over long durations (and, therefore, frailty in old age) (Abbring and

van den Berg, 2007); moreover, unique parameter identification exists (Honoré, 1993).

Individuals draw the random effect value at initial age 65. For tractability, the random

effect is not shared over different states.

Estimating a mixed proportional hazard model with left truncation and frailty is

computationally challenging because the left-truncated sample has a different frailty

distribution. Allowing for time-varying covariates and repeated spells adds a layer of

complexity. Because we assume independence across transitions, we follow the estimation

technique from Chapter 5 addressing these challenges; see Appendix C.2 for more details

and the maximum likelihood specification. Having estimates on the transition rates, we

use a simulation model to determine long-term care use and remaining life expectancy

at age 65 for different groups. As a starting point, we use the conditional distribution of

our variables at age 65 (see Table C.1 in Appendix C.2). For the simulations, we extend

the approach by Crowther and Lambert (2017) to allow for transitions from couples to

single-person households. More specifically, for couples, we first simulate age profiles

from age 65 until the end of life for both partners. Next, we re-simulate the remaining

age profile for the surviving partner according to our simulation model. We simulate

N = 100, 000 households repeated 5,000 times to construct 95% confidence intervals; see

Appendix C.2 for additional details.
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3.5 Results

We show results on the simulated durations of long-term care and life expectancy over

lifetime income and we highlight the importance of gender and marital status. We then

show how these differences translate into the value of annuity- and LTC insurance and

we finally present results for a life care annuity.19

3.5.1 Socioeconomic Differences in Long-term Care and Mortal-

ity

We find substantial gradients in long-term care use and remaining life expectancy over

lifetime income. Table 3.1 shows that low-income individuals live shorter than high-

income individuals but use more long-term care. On average, men and women in the

bottom income quintile, respectively, live 4.0 and 2.3 years shorter than their high-income

counterparts in the top income quintile (see last column). On contrary, low-income men

and women spend 1.1 and 1.7 years longer in long-term care than their high-income

counterparts. There are also gradients in the probability of ever using long-term care,

ranging from 91% for women in the bottom income quintile to 86% in the top income

quintile. Overall, the income gradient concerning life expectancy is steeper for men than

for women while, reversely, the gradient for long-term care is steeper for women than

for men.

To see the role of having a partner for these socioeconomic gradients, we turn to

the difference for initially married versus initially single individuals. Marital status is

an important factor influencing the transition into long-term care and mortality. We

simulate the durations separately for individuals who married at age 65 and those single

and compute the difference ∆(Married − Singles). The difference in life expectancy

between initial married and singles is 2.5 years for men and 1.8 years for women. This

survival advantage of being married is among others reported in Pijoan-Mas and Ríos-
19A robustness check confirmed a good match between simulated and empirical surival and long-term

care use probabilities by age, marital status, lifetime income and gender. Results are available upon
request.
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Rull (2014). In addition, we find that single men spend 0.8 years more in long-term care

than their married counterparts. We do not find a significant difference of long-term

care use over marital status for women. This result suggests that women have fewer

opportunities to get informal care from their spouse than men and tend to live longer.

The number in the last column corresponds to a differences-in-differences approach

showing how being married or single affects the difference between the top and the

bottom income quintile. Our results show that the gap in life expectancy between the

bottom and top income group is 2.4 years smaller for married women than for single

women. Essentially, this implies that being married flattens the income gradient of life

expectancy for women: only for single women we observe a strong gradient over income

while this is moderate for married women. This same number is only 0.4 years for men,

implying that the gradient in life expectancy is only moderately flattened for married

individuals. Similarly, the gap in long-term care use between the bottom and top income

group is 1.6 years smaller for married men than for single men. This number is 0.1 years

but insignificant for women. Again, this implies that the income gradient in long-term

care use for married men is almost flat, whereas it is relatively strong for single men.

Turning to the socio-demographic difference, we find that women tend to live 3.9 years

longer than men (21.9-18.0 years). In addition, women have a higher prevalence and

longer duration of long-term care use than men: About 89 percent of women ever uses

long-term care with an average duration of 5.1 years conditional upon use. In contrast,

77 percent of men use long-term care with an average duration of 3.1 years, amounting

to 12% of their remaining lifetime, compared to 18% for women.
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3.5. Results 77

3.5.2 Premium Returns of Old-Age Insurances

Stand-Alone Contracts of Annuity and LTC Insurance

We translate the heterogeneity in long-term care use and life expectancy into a money’s

worth for the different insurances over subgroups according to Equation (3.5).

Uniform Premium We first study an annuity and a LTC insurance independently

assuming a uniform premium for everyone for each insurance, implying that the total

insured sample H comprises the whole population at age 65+. We focus on the income

quintiles as our subgroups. The implied premium returns are depicted in Figure 3.2.

Figure 3.2: Premium Return with Uniform Premium
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Notes: Population-averaged premium returns for the life cycle simulation of 100, 000
individuals. Medians across 5,000 bootstrapped samples are shown. The underlying premium
returns on the pension annuity, LTC insurance, and life care annuity are provided in Table C.5
in Appendix C.6.

As reflected by the steeper line, the results show that benefit inequality across income

groups is larger for LTC insurance than for annuities. The premium return for the lowest

income group is 29.9 percent, implying that a premium of one Euro yields an expected

value of benefits of 1.299 Euro. On the other hand, the highest income groups lose 17.0

cents on every euro invested in the LTC insurance. On the contrary, for every euro
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78 Chapter 3. Combining Insurance Against Old-Age Risks

invested in the annuity priced according to the average risk, households in the lowest

income group receive only 91.1 cents. Households in the highest income groups have a

positive return and earn 3.6 cents on top of every euro invested. The larger discrepancy

in premium returns for LTC insurance makes this insurance product more prone to

adverse selection by income groups than pension annuities in our case.

Figure 3.3: Premium Returns by Gender and Marital Status with Uniform Premium
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Married Women
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Notes: These are population-averaged premium returns for the life cycle simulation of 100, 000
individuals. Medians across 5,000 bootstrapped samples are shown.

The socio-demographic differences of life expectancy and long-term care use over
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3.5. Results 79

marital status and gender translate into heterogeneity in premium returns over these

dimensions. There is also a negative correlation in risks for marital status as married

individuals live longer but spend less time in long-term care - at least for men. Note,

however, that the two risks are not negatively correlated over gender because women

have a higher life expectancy and spend more time in long-term care.

This is reflected in Figure 3.3 which shows the implied premium returns with uniform

premium over marital status and gender. The large difference across panel (a)-(d) reveals

strong level effects, particularly over gender. Married men have negative premium returns

throughout the income distribution, whereas married women value both insurances.

The reason for this outcome is simple: men die earlier and they use less long-term care.

Insurances priced at the average risk are not valuable for this group.20 The picture

is similar for singles, except single men in the two lower income quintiles who enjoy

positive returns of an LTC insurance.

Group-Specific Premia The large differences in premium returns for stand-alone

pension annuities and LTC insurance can potentially lead to strong adverse selection

effects based on marital status and gender. To prevent a potential unraveling of the

insurance market, group-specific premia based on observables such as marital status and

gender might reduce adverse selection problems.

Figure 3.4 shows the effect of marital-status-, and gender-specific premia on the

premium returns. Compared to Figure 3.3, group-specific premia shift the lines closer

to zero, while –unsurprisingly– the gradients over income still persist. Offering premia

that may differ over gender and marital status, however, are able to eliminate the large

level effects of the premium returns between these groups which decrease the adverse

selection problem significantly. Figure 3.4 also shows large variations in the steepness

and the shape of the gradients. For example, the income gradients in long-term care are

particularly steep for married women and single men, while the shape of the gradient for
20For practical reasons, we assume that discrimination over lifetime income is not possible for insurance

companies. This information is not only hard to obtain for insurances, it is also hard to imagine a
regressive premium system where the income-poor need to pay higher premia than the income-rich to
reduce differences in premium returns in the LTC insurance.
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Figure 3.4: Premium Return over Gender and Marital Status with Group-Specific
Premium
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Married Women
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Notes: Population-averaged premium returns for the life cycle simulation of 100, 000
individuals. Medians across 5,000 bootstrapped samples are shown. The underlying premium
returns on the pension annuity and LTC insurance are provided in Table C.5 in Appendix C.6.

married men is more hump-shaped. The annuity gradient over income is stronger for men

(both married and single) and almost non-existent for married women. These differences

become important when analyzing the optimal combination of the two insurances which

we turn to next.



641784-L-bw-vdVaart641784-L-bw-vdVaart641784-L-bw-vdVaart641784-L-bw-vdVaart
Processed on: 13-5-2024Processed on: 13-5-2024Processed on: 13-5-2024Processed on: 13-5-2024 PDF page: 95PDF page: 95PDF page: 95PDF page: 95

3.5. Results 81

A Life Care Annuity

As shown in Section 3.3, combined insurance can moderate welfare losses from adverse

selection when the correlation between surviving and getting in need of long-term care is

negative. In our setting, this is reflected by the reverse gradients of the premium-return

lines depicted in Figures 3.2 to 3.4. However, at least with a uniform premium, we have

a positive correlation of longevity and LTC risk over gender, which counteracts this

negative correlation (cf. Figure 3.3).

We derive an optimal life care annuity according to Equation (3.6) and compare two

cases assuming (i) a uniform premium over all observable groups (i.e., lifetime income,

gender, marital status) and (ii) group-specific premia over gender and marital status

where the optimal top-up ρ∗ is found only over the remaining differences over lifetime

income.

Table 3.2 shows the results of the optimal top-up of long-term care benefits and Table

3.3 presents standard deviations for stand-alone insurances and the life care annuity as

a measure for the adverse selection problem with each of the three insurances.

Table 3.2: Optimal Life Care Annuity: ρ∗ and Components

Level
effect

Heterogeneity
in risk

Correlation
between risks

Optimal
LTC top-up

E(s(ξ))
E(l(ξ))

SD
{

s(ξ)
E(s(ξ))

}
SD
{

l(ξ)
E(l(ξ))

} Corr
{

s(ξ)
E(s(ξ)) ,

l(ξ)
E(l(ξ))

}
ρ⋆

Corr=−1 ρ⋆

Uniform Premium 5.68 0.33 0.57 1.88 −0.56

Group-Specific Premium

Married Men 8.50 1.26 −0.73 10.67 11.16
Married Women 5.03 0.04 −0.32 0.22 0.08
Single Men 5.25 0.42 −0.93 2.18 2.11
Single Women 4.41 0.35 −0.90 1.55 1.47

Notes: Median estimates across 5,000 bootstrapped samples. Optimal top-up and its compo-
nents according to eq. (3.6) and (3.7).

We first turn to the case assuming a uniform premium paid by all individuals. The

optimal top-up of LTC benefits needed to minimize the heterogeneity in premium returns

across income groups is negative, ρ∗ = −0.56, implying a lower benefit when needing
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long-term care, which is, of course, not a meaningful insurance. The result is coming

from an overall strongly positive correlation between the two risks across the studied risk

types. Recall our finding that women live longer and use more long-term care than men,

implying a positive correlation of risks across gender. These large gender differences

in longevity and long-term care use are stronger than the – negatively correlated –

differences over income and marital status and induce an overall positive correlation

between longevity and long-term care use. In addition, Table 3.3 shows that the standard

deviation for the combined product is still very high, so the bundling does not reduce

the adverse selection problem by much. Overall, this implies that a life care annuity

with uniform premium does not work, so we now turn to group-specific premia.

First, note that with group-specific premia, all correlations turn negative, cf. column

3 in Table 3.2, which was already implied by the inverse gradients shown in Figure

3.4. To understand the different values of the optimal top-up, ρ∗, over these groups,

let us decompose it into its components in the first three columns. The first column

can be interpreted as the value of ρ∗ if the heterogeneity in risk would be equal over

states (implying a ratio of the standard deviations of one), and the correlation would

be perfectly negative. Similarly, the second column would be the value of ρ∗ if the

duration would be equal for both states and the correlation −1. The value ρ⋆
Corr=−1

then is simply the product of the two, while the final column shows the sum of all three

effects including the effect stemming from a non-perfectly negative correlation of the

two risks.

Turning first to married men we observe that the duration in long-term care is rather

short, so the optimal top-up would be 8.5 from the level effect alone. This can be seen

from the optimality condition in Equation (3.6), prescribing a higher benefit to be paid

in states with shorter duration. At the same time, the heterogeneity in longevity risk

is larger, reinforcing the effect on the optimal top-up. If the heterogeneity effect is

isolated, the optimal top-up would only be 1.26 because Equation (3.6) prescribes to

put a higher weight on the less heterogenous state (needing long-term care in this case).
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3.5. Results 83

The combined effect in column 4 is actually quite close to the final optimal value of

11.16 because the correlation between the two risks is quite strongly negative (−0.73).

The value of ρ∗ = 11.16 implies that the benefit in the case of long-term care need to be

more than 11 times larger than the annuity benefit, a high number that we put into

perspective in the next section.

In stark contrast, married women have an optimal top-up of only 0.08 implying the

optimal combination of insurances is close to a mere annuity. Two factors from the

data drive this result: First, the heterogeneity in risk is very low for annuities compared

to a strong one for LTC insurance implying the ratio to be 0.04; also when compared

with the flat gradient for annuities and the strong gradient in long-term care insurance

in panel (b) of Figure 3.4. In addition, the correlation is with −0.32 only moderately

negative and a combination of the two insurances is not well-suited.

The picture is quite different for single individuals. Here, we find almost perfectly

negative correlation between the risks as well as offsetting level effects and heterogeneity

in risks yielding reasonable values for the optimal top-up between 2.11 for single men

and 1.47 for single women.

Table 3.3: Standard Deviations of Premium Returns

Annuity LTC
insurance

Life Care
annuity

SD
{

s(ξ)
E(s(ξ))

}
SD
{

l(ξ)
E(l(ξ))

}
SD
{

s(ξ)+ρ∗·l(ξ)
E(s(ξ))+ρ∗·E(l(ξ))

}
Uniform Premium 11.47

(11.21;11.72)
34.64

(33.82;35.45)
11.00

(10.77;11.23)

Group-Specific Premium

Married Men 7.57
(6.86;8.31)

6.04
(4.32;7.96)

2.42
(1.02;4.15)

Married Women 0.63
(0.31;0.98)

14.15
(12.88;15.37)

0.55
(0.22;0.93)

Single Men 8.74
(7.79;9.72)

21.06
(18.84;23.29)

2.22
(1.09;3.43)

Single Women 5.01
(4.46;5.55)

14.26
(13.0;15.55)

1.64̇
(0.97;2.34)

Notes: Values computed correspond to the objective function from eq. 3.5 and are multiplied
with 100%. Median estimates across 5,000 bootstrapped samples and the 2.5th and 97.5th

percentiles between brackets.

The standard deviations for group-specific premium returns in Table 3.3 reveal the
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84 Chapter 3. Combining Insurance Against Old-Age Risks

highest values for the stand-alone LTC insurances implying that adverse selection

problems are most severe for this case. With group-specific premia, a life care annuity

reduces these heterogeneities substantially always yielding lower standard deviations

than in both of the stand-alone insurances.

Our results suggest that a life care annuity to hedge the two risks of longevity and

long-term care is not quite possible for married men and women. The implied top-up

of the benefit in the long-term care state is unreasonably high for married men and

unreasonably low for married women. In contrast, a combined insurance is well-suited

for single individuals.

3.6 Discussion

Our analysis points to a broader question of why, in practice, certain risks are covered

under bundled policies while others are not. Examples for bundled insurances are not

only life care annuities, but also life-insurances with a LTC rider, combined disability

coverage, reverse mortgage, or home-car insurance, cf. Eling and Ghavibazoo (2019).

In our analysis, we shed further light on when and how to combine insurance products

by disentangling the determinants of the risk structure when bundling is possible and

what it depends on. To minimize the adverse selection problem, we show that it is not

sufficient to only focus at the correlation between lifetime long-term care use and life

expectancy, but rather also take into account the average size and variation of these

correlated measures.

Our formula for ρ∗ is easy to apply and to compare to other studies that report

lifetime long-term care use and remaining life expectancy by socioeconomic group. For

example, we can approximate a value of ρ∗ using results from Ko (2022), Table 4, which

documents longevity and long-term care needs over income deciles. Using these numbers

yields a value of ρ∗ = 2.09 for 60+ individuals in the U.S. ignoring the heterogeneity in

gender and marital status.21

What can be learned from our analysis for the optimal top-up value ρ∗ for the life
21In the computation we assumed an equal weight for each income group.
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care annuity market in the U.S.? According to www.annuity.org, the monthly income

stream paid when healthy in a typical life care annuity contract can be two to three

times as large in the case of long-term care needs. This would imply a value of ρ of

two or three for a typical life care annuity. According to our results in Table 3.2 these

values are very close to the optimal top-up for single men and women, implying that

for these groups the existing insurances in the U.S. would largely diminish adverse

selection problems. However, the picture looks quite different for married men and

married women: Men would require a benefit level 11 times higher than the annuity paid

when not needing long-term care. This is not offered as a combined product and rather

resembles a stand-alone LTC insurance. In contrast, a stand-alone annuity would rather

fit for married women, which is implied by the value for ρ∗ close to zero. Consequently,

the current market for life care annuities does not seem to reduce adverse selection

problems for married individuals.

Another important dimension that our study highlights are group-specific premia,

in particular discrimination of premia over marital status and gender. In the U.S.,

discrimination over marital status are common practice by offering so-called ’couple

discounts’. Solomon (2022) reports couple discounts for LTC insurance of around 25%

compared to singles. Different premia also prevail for life care annuities, life insurance,

and private annuities. Gender-based pricing in insurance is still practice for many

insurances and many states in the US, although the Affordable Care Act banned

discrimination over gender for health insurance in 2014. In the European Union, the

Court of Justice declared gender-specific premia invalid with European legislation and

prohibited this practice in Europe in 2012. For LTC and combined products, however,

premia largely vary over gender and marital status, although couples tend to be insured

jointly. According to American Association for Long-Term Care, premia for single

women are around 50% higher than for men and per-capita also higher than for the

combined premium for couples.22

22See: https://www.aaltci.org/long-term-care-insurance/learning-center/ltcfacts-2022.
php [retrieved on: October 20th, 2023]

https://www.annuity.org/annuities/riders/long-term-care/
https://www.aaltci.org/long-term-care-insurance/learning-center/ltcfacts-2022.php
https://www.aaltci.org/long-term-care-insurance/learning-center/ltcfacts-2022.php
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We find sizable differences in the heterogeneity in risks over gender and marital status,

which calls for the need to discriminate premia over these dimensions to tackle adverse

selection problems adequately.

3.7 Conclusion

We quantify socioeconomic and socio-demographic differences in mortality and long-term

care by estimating a flexible multi-state model on rich administrative data from the

Netherlands. We use the estimated model to examine the adverse selection problems of

stand-alone annuities and of LTC insurance for different groups. We further determine

the optimal combination of these two products in a life care annuity that reduces

the heterogeneity of premium returns across socioeconomic groups. We find a strong

socioeconomic gradient in mortality and long-term care implying a negative correlation

between the two risks and a large gender gradient in these two risks inducing a positive

correlation. A third important factor influencing these differences is marital status

indicating the importance of the availability of informal care by the spouse, particularly

for men. A life care annuity aiming to minimize the heterogeneity of benefits between

socioeconomic groups is not feasible with a uniform premium. Only with group-specific

premia and then mostly for single individuals rather than for the married, a life care

annuity can reduce adverse selection problems. Our results might provide an explanation

for why the existing market for life care annuities in the U.S. is so small.
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Chapter 4

Health Inequalities and the Progressivity of

Old-Age Social Insurance Programs
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4.1 Introduction

Health is strongly associated with socioeconomic status (Deaton, 2002; Chetty et al.,

2016). This is a fundamental aspect of inequality in society with important implications

for the progressivity of old-age social insurance programs, such as social security and

public long-term care (LTC) insurance (Poterba, 2014; Auerbach et al., 2017). As the

income-rich live longer than the income-poor, they receive more years of social security

benefits (see, e.g.: Deaton, 2002; Smith, 2007; Chetty et al., 2016). In contrast, better

health may induce lower LTC needs for the income-rich, implying fewer years of costly

out-of-pocket LTC expenditures, such as co-payments for nursing home use (see, e.g.:

Goda et al., 2011b; Jones et al., 2018; Rodrigues et al., 2018; Tenand et al., 2020a).

Health inequalities could imply an unintended income-regressive redistribution, raising

two important questions: What is the size of the welfare gain for households with higher

socioeconomic status due to expecting to live longer and to use LTC for a shorter time,

and what mechanisms generate this gain? Such analysis requires a structural life cycle

model that goes beyond conventional comparison of lifetime benefits and taxes (Goda

et al., 2011a; Bosworth et al., 2016) because welfare consists non-monetary factors,

including the utility of consumption, bequeathing, and living longer (Bernheim, 1987).

This chapter quantifies differences in the distribution of welfare that arise due to

socioeconomic inequalities in health. Furthermore, we investigate the mechanisms

behind the differences, particularly LTC co-payments and leaving bequests. Bequests are

relevant as earlier research finds that wealthier households value these, and households

can enlarge them when lifetime social insurance benefits are higher (De Nardi et al.,

2010; Ameriks et al., 2011; Lockwood, 2018). We develop a life cycle model of singles

and couples where households value consumption, bequeathing, and living longer and are

exposed to uncertain income during working age, and uncertain LTC use and mortality

after retirement. In the structural model, LTC use and survival risks differ exogenously

by gender, marital status, and lifetime income quintiles to replicate the availability of

informal care and the presence of socioeconomic differences in health. Our study focuses
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on the Netherlands which has generous and comprehensive public LTC provision (Bakx

et al., 2023), including means-tested co-payments for nursing home care. We estimate

the model using unique administrative data on income, assets, LTC needs, and mortality

from 2006 to 2014. We use the estimated model to compute how much consumption

compensation each lifetime income quintile would require to be indifferent to being

exposed to the LTC use and mortality risk of the bottom lifetime income quintile (cf.

De Nardi et al., 2024). To examine the impact of bequests and LTC co-payments,

we remove them from the baseline model and re-compute the so-called consumption

compensation equivalent.

Our approach and welfare measure are related to De Nardi et al. (2024). They use a

structural life cycle model to quantify the lifetime cost of poor health for different initial

health types. By assuming away the existence of poor health, they quantify the welfare

cost of poor health for distinct health types. While we closely follow their approach,

we conceptually differ as we shut down heterogeneity in poor health rather than the

possibility of being in poor health.

Our estimation proceeds in two steps. First, we estimate income, LTC, and mortality

risk processes and calibrate the risk aversion parameter. Second, we include these

health and income risks in a structural life cycle model and estimate its key behavioral

parameters: the subjective discount factor, consumption equivalence scale, the strength

of the bequest motive, and the extent to which bequests are a luxury good. We

estimate the parameters by matching simulated asset profiles to key aspects of the data,

including asset holdings by marital status and lifetime income group. Also, we calibrate

a parameter ensuring that households prefer living over death in utility terms (Hall and

Jones, 2007). After that, we use the estimated model to make counterfactual predictions.

Aligned with studies from the U.S., our findings identify leaving bequests as an

important channel for the income-rich to save: we find the marginal propensity to

bequeath to be unit value for every euro above a consumption level of 40 thousand

euros. This saving motive almost exclusively involves households in the top lifetime
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income quintile; hence, bequests are luxury goods. Turning to differences between singles

and couples, the estimated equivalence scale of consumption is 1.15 and lower than

usually documented in the literature (see e.g., De Nardi et al., 2021), implying Dutch

households can save more due to stronger economies of scale. Lastly, the estimated

subjective discount factor of 0.96 reveals a moderate preference for current consumption.

In a subsequent counterfactual analysis, we find that moving from the counterfactual of

no health differences to the baseline where health differences exist, increases consumption

by 23.4% for the top income quintile after age 65. In monetary terms this is a gain of

11.2%, driven mainly by more retirement benefits. Next, we assume away a preference

for bequest saving and find that the welfare gain of 23.4% shrinks to 1.2% for the top

lifetime income quintile. Hence, much of the welfare gain due to health inequalities

stems from leaving larger bequests. Finally, if we remove co-payments, the welfare gain

remains 21.8%, implying that valuable bequests rather than co-payments explain the

welfare gain. For policy-makers, increased bequest taxes could thus be a way to alleviate

welfare gains due to living longer and using less LTC.

This chapter contributes to several literature strands. A recently developed literature

quantifies the lifetime cost of (self-reported) bad health (see De Nardi et al., 2024, and

the references therein). We apply their approach to the large macro-oriented literature

that characterizes the redistribution of old-age social insurance, programs including

Medicaid (e.g., De Nardi et al., 2016; Braun et al., 2017), Medicare (e.g., McClellan and

Skinner, 2006; Bhattacharya and Lakdawalla, 2006), social security (e.g., Goda et al.,

2011a; Fehr et al., 2013; Groneck and Wallenius, 2021), and co-payments for LTC (e.g.,

Wouterse et al., 2021). Auerbach et al. (2017) advocates a more holistic accounting

approach that includes all old-age social insurance programs to report progressivity.

Closest to our study, Bagchi (2019) and Jones and Li (2023) use a structural life

cycle model to study the interaction between heterogeneous mortality rates and social

security benefit formula. We innovate this literature by examining the contribution of

heterogenous LTC use and bequests to the redistribution of old-age social insurance.
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This chapter also contributes to the quantitative-micro literature on retirees’ saving

behavior. The desire to leave a bequest has received considerable attention as a potential

explanation for why more affluent households retain high levels of wealth in old age

(De Nardi et al., 2010; Lockwood, 2018; Ameriks et al., 2020; Nakajima and Telyukova,

2024). However, the relative importance of saving for a bequest and precautionary

saving varies depending on the estimation strategy and data. De Nardi et al. (2010)

finds an insignificant bequest saving motive, arguably because savings in the U.S. are

simultaneously used to pay for high out-of-pocket medical expenditures and to leave as

a bequest (Dynan et al., 2004). Furthermore, the income-rich are under-represented in

many surveys, including their Health Dynamics of the Oldest Old (AHEAD) data set.

Lockwood (2018) instead finds a significant bequest saving motive by simultaneously

fitting data on wealth and LTC insurance ownership. They argue that LTC insurance

ownership acts as an exclusion restriction to separately identify a bequest saving motive.

We add to this literature by using data from a country where the need for precautionary

saving against out-of-pocket medical expenditures is low and where the income-rich are

well-represented in the administrative data.

Besides, we link to the scarce literature that studies different saving behaviour by

couples and singles within a life cycle model (e.g., De Nardi et al., 2021). Beside that

couple member’s can care about the welfare of a surviving partner, we capture the link

between availability of informal care and formal LTC cost. It should be noted that

for parsimony, we do not model the determinants of informal care; papers addressing

such endogeneity stemming from altruistic and strategic informal care provision include

Barczyk and Kredler (2018) and Ko (2022).

The chapter is organized as follows. Section 4.2 presents the socioeconomic differences

in health. Section 4.3 describes the life cycle model. Section 4.4 provides the data and

estimation procedure. Section 4.5 discusses the second-step estimation results. Section

4.6 performs the counterfactual health experiment. Section 4.7 discusses and concludes.
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4.2 Socioeconomic Differences in LTC and Mortality

Before analyzing the welfare gain due to higher socioeconomic groups living longer and

using less long-term care (LTC), it is crucial to examine how large these differences are.

To quantify the differences, we use the same data and methods as in Chapter 3. In

the analysis, we focus on 65+ individuals who are or were married at age 65. LTC use

consists of institutional care use (Chapter 3 also included initial singles and home-based

care use).1 The sample contains 2,548,664 individuals and 1,487,109 households. See

Appendix D.2.1 for a detailed description of the data and a summary of the estimation

method.

Table 4.1 summarizes the remaining life expectancy (LE) and LTC use for men and

women at age 65. We find opposite socioeconomic differences in LTC use and remaining

life expectancy. Individuals within the top income quintile make less use of LTC but

live longer. Men within the top income quintile live 3.6 years longer than their bottom

income counterparts. For women this difference is 0.7 years. Men in the bottom income

quintile use LTC for 0.1 years more years than their top income counterparts. For

women this difference is 0.7 years. The difference in LTC use is larger for women and

amounts to 26% of their average duration of using LTC. The larger difference for women

can partially be explained by the fact that they often outlive their partner who often

provides informal care.

1Home-based care use is not a separate state because its co-payments and, thus, redistributive effects
are very limited in the Netherlands (Tenand et al., 2020b).
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4.3 Life Cycle Model

We develop a life cycle model with uncertain LTC use and mortality to quantify the

welfare gain of the higher lifetime income quintiles using less LTC and living longer. At

every age t ∈ {25, 26, ...100}, a household maximizes lifetime utility by choosing total

consumption expenditures c and savings a. The savings also determine the bequest

that is left upon the death of the last household member. Households derive utility

from consumption, leaving bequests, and being alive (independent of consumption). For

tractability, we assume that household members are the same age such that a single age

suffices to characterize the household.

A household has one of the following family statuses (f): a couple, single woman, or

single man. Households enter the model as a couple initially and remain a couple until

retirement at age 65, so there is no divorce or widowhood. Also, we assume no use of

LTC before age 65 because of low likelihood.2 After age 65, survival and use of LTC

become uncertain, and couple households can become a single woman or single man

household.

4.3.1 Preferences

The per-period CRRA utility functions of couples (C) and singles (S) are given by:

uC (c) = 2 ·

(
c
η

)1−σ

1 − σ
+ b, and uS (c) = c1−σ

1 − σ
+ b, σ ≥ 0, 1 ≤ η ≤ 2, b ≥ 0,

where the parameter σ ≥ 0 reflects the level of risk aversion.

Following the literature (De Nardi et al., 2021), we allow couples to benefit from

economies of scale. Partners can pool their income and can consume goods jointly.

η determines the extent to which households benefit from economies of scale. η < 2

features economies of scale: each couple member consumes c
η units while this would be

c
2 < c

η if they are single (Browning et al., 2013).

2At age 65, only 1% of the sample uses LTC.
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Following De Nardi et al. (2024), we introduce scaling parameter b > 0. This parameter

is crucial when examining the welfare implications of altered life expectancies because

households could attach value to the ‘invisible’ good of being alive that goes beyond

consuming and bequeathing, e.g., the happiness of being alive.3 In our model, risk-averse

households would reach higher utility when being dead because uS < 0 and uC < 0

and utility from death is zero. We assume that utility from being alive is higher, thus

calibrating a b yielding non-negative utility in any state when alive: uS ≥ 0 and uC ≥ 0.

The household derives utility B(a) from leaving bequest a. Following De Nardi (2004):

B(a) = ϕ

1 − ϕ

σ

·

(
ϕ

1−ϕ · ca + a

)1−σ

1 − σ
if ϕ ∈ (0, 1),

B(a) = c−σ
a · a if ϕ = 1 and B(a) = 0 if ϕ = 0, which De Nardi (2004) introduced to be

consistent with wealth concentration among the wealthiest households in the U.S.. ca is

the consumption level below which households, under perfect certainty, will not leave a

bequest (Lockwood, 2018). ca > 0 implies bequests to be luxury goods. If households’

wealth meets threshold ca, ϕ is the share of excess wealth spent on a bequest: higher ϕ

increases marginal utility from bequeathing relative to marginal utility from consuming.

4.3.2 Sources of Uncertainty

An important empirical artifact to be replicated is heterogeneity in asset holdings. A

source for heterogeneity is uncertainty, forcing households to make precautionary savings

(Carroll, 1997). We have uncertain health, family status, and income in our model.

Use of LTC and survival After age 65, exogenous health and family status shocks

occur. The health of the husband and wife, hm and hf , evolve jointly and can differ

between them (hm ̸= hf ). hm and hf take three values: a household member does not

use public institutional care (i = 1), uses public institutional care (i = 2), or is dead
3In the literature, this parameter is used to compute the Value of a Statistical Life, i.e., the price

that a population is willing to pay to prevent one certain death in the current period (see, e.g., Hall
and Jones, 2007; St-Amour, 2022). This statistic is outside the scope of our study.
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(i = 3). LTC use induces co-payments (out-of-pocket expenditures) m(y, a, hm, hf ) that

depend on income (y) and assets (a); these are paid to the government. We assume that

LTC needs are homogenous across institutionalized individuals, so co-payments do not

depend on the severity of the need for care.

We assume a Markovian process, so transition probabilities depend on the health

and survival statuses of the preceding period: hm
t and hf

t . Survival status of a spouse

controls for the potential availability of informal care. Furthermore, the health transition

probability depends on lifetime income I and age t. Health transition probability π is:

πi,j
k,l(t, I) = P(hm

t+1 = k, hf
t+1 = l | hm

t = i, hf
t = j, t, I) with: (i, j, k, l) ∈ {1, 2, 3}.

In particular, the death probability of the household is as follows:

πi,j
3,3(t, I) = P(hm

t+1 = 3, hf
t+1 = 3 | hm

t = i, hf
t = j, t, I) with: (i, j) ∈ {1, 2, 3}.

Life cycle income: age 25 to 65 Exogenous income shocks happen during working

life, reflecting the presence of labor supply shocks and health shocks. To save on the state

space, we assume that these income shocks occur at the household level. Following the

standard literature (Storesletten et al., 2004; French, 2005), household income dynamics

follow an AR(1) process:

yt = min(ỹt; y) (4.1)

ỹt = αt · exp(θ) · exp(ηt) · exp(ϵt)

ηt = ρ · ηt−1 + ut

θ ∼ N (0, σ2
θ); ϵt ∼ N (0, σ2

ϵ ); ut ∼ N (0, σ2
u); η24 = 0,

where yt is pre-tax household income, including income from labor, capital, and social

insurance. αt a deterministic age effect. θ is a fixed (labor) productivity effect. ηt is

a persistent shock. ϵt is a transitory shock, in part reflecting transitory health shocks.
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η24 is the initial level of the persistent income part. y is a government-provided income

floor.

Life cycle income: age 65 and older Households receive retirement income yt =

SS(f) + DB65(f) consisting of a part independent of the income history, SS, and a part

DB65, whose defined benefit formula depends on the income history {ys}64
s=25. Income

depends on the family structure because it becomes a smaller survivor benefit upon

widowhood. Retirement income is stochastic due to random shocks in the income history

until age 65 and time-varying family status.

4.3.3 The Government

The government provides income and LTC insurance after retirement by providing a

first pillar pension and (partially) covering institutional care costs. Households pay

mandatory for this insurance via dedicated taxes τSS(y) and τL(y, f, t). Moreover,

co-payments m(y, a, hm, hf ) finance LTC use. Lastly, households pay a general income

tax τG(y, f, t). We specify the functional forms of tax function τ in Appendix D.2.6. We

specify m in Section 4.4.

Government revenues and costs in the model do not necessarily balance, which we

ensure with additional lump-sum transfers TrSS and TrLT C . Appendix D.1.1 describes

the procedure for how the government sets these transfer levels.

4.3.4 Optimization Problem

The timing is as follows: at the beginning of the period, households observe their state

variables ℵ that are relevant to their decision-making. The household obtains interest

rate r on assets a, obtains income y, pays taxes τ and co-payments m, and makes the

government-balancing transfers Tr. Then, based on state vector ℵ, households consume

or save the remaining assets. Lastly, a survival and LTC use shock hits. If the final

household member has died, any remaining assets go to the household’s heirs (we assume

households value their gross bequest and, therefore, ignore bequest taxes).

The state vector, ℵ , represents variables that are commonly observed by the household
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at the beginning of each period t:

ℵW
t = (at, θ, ηt, ϵt, DBt, t)′ (if t < 65)

ℵR
t = (at, DB65, ft, hm

t , hf
t , t)′, (if t ≥ 65)

where after age 65, retirement income replaces stochastic income, and family status ft

and health statuses hm
t and hf

t become uncertain. DBt is the pension accrual until age

t.

Note that all variables are known before deciding consumption ct and next period’s

assets at+1, so we can recursively write the household’s problem. Denote β the subjective

discount factor. The household’s value function at age t is:

Vt(ℵW
t ) = max

ct,at+1
uC(ct) + β · E[Vt+1(ℵW

t+1) | ℵW
t ]. (if t < 65)

Vt(ℵR
t ) = max

ct,at+1
uf (ct) + β ·

(
1 − πi,j

3,3(t, I)
)

· E[V (ℵR
t+1) | ℵR

t ]

+ β · πi,j
3,3(t, I) · B(at+1), (if t ≥ 65)

subject to a budget constraint and no-borrowing constraint, defining next period’s assets:

at+1 = (1 + r) · at + yt − τG − τSS − τL − mt − TrSS − TrLT C − ct ≥ 0.

The dynamic optimization problem after age 65 is different due to health uncertainty.

A household survives into the next period with probability 1 − πi,j
3,3(·), and then faces

the optimization problem again (Vt+1). With probability πi,j
3,3(·), the household leaves a

bequest with utility flow B(at+1). Also co-payments for LTC use might occur (mt ̸= 0).

We discuss the numerical implementation in Appendix D.1.2 to D.1.4.

As will be later important for our counterfactual analyses, health hf
t and hm

t impact

the decision problem both via the utility function and budget constraint. The survival

probabilities are lower when using LTC, implying that future consumption is more

heavily discounted and households save less for future consumption. Health ambiguously
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affects the decision problem via co-payments. On the one hand, co-payments for LTC

limit the available budget for consumption, inducing the household to precautionary

save. On the other hand, a co-payment depends on assets and puts a penalty on saving.

4.4 Data and Estimation Procedure

We use administrative data from Statistics Netherlands that is available under restricted

access. We can merge different data sets within the secured environment based on

a unique individual and household identifier. Data come from multiple sources and

registries: tax files (income and assets), municipal population registries (marital status,

gender, birth year, and age), and a registry on institutional care use and deaths.

We use a two-step strategy similar to Gourinchas and Parker (2002) and De Nardi

et al. (2010) to estimate the unknown parameters of our life cycle model. In the first

step, we estimate the parameters for the health and income processes directly from the

data, denoted by χ. Also, we tailor the pension and LTC use system to the Dutch

setup 2006-2014. We fix the risk aversion and interest rate to σ = 3 and r = 2%, values

commonly used and found in life cycle studies (see, e.g., De Nardi et al., 2010).

Given the parameters from the first stage, we estimate the remaining parameters.

To this end, we apply the method of simulated moments, i.e. we minimize the sum

of squared differences between empirical and simulated moments of the asset distribu-

tion. The parameters to estimate are the subjective discount factor, bequest utility

parameters, equivalence scale of consumption, and government-balancing transfers:

δ = (β, ϕ, ca, η, TrSS , TrLT C)′. After estimating all the parameters, we calibrate b, i.e.,

the scaling parameter for the utility of surviving households.

4.4.1 First-Step Calibration and Estimation

Use of LTC and survival We estimate the health transition matrix using our

simulated sample on household use of LTC from Section 4.2. We convert the life histories

from continuous time to discrete time (an age period of one year), and compute transition

probabilities accordingly. LTC use is assumed to be used throughout the entire age
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period and yearly costs the government e58, 500 per user. The model is estimated using

daily reported deaths, institutional care use, and marital status between 2006 and 2014.

See Chapter 3 and Appendix D.2.1 for a detailed description of the data and a summary

of the estimation method, including the computation of lifetime income (quintiles).

Co-payments for LTC use In the Netherlands, households make a co-payment to

finance the use of LTC. The co-payment depends on the asset level a, household income

y, and health statuses hm and hf . Households pay a low-rate or high-rate co-payment

depending on the LTC used by the household members (hm and hf ). The low-rate

co-payment applies to couples with only one LTC user. The high-rate co-payment applies

to singles and households with two LTC users:4

m(y, a, ·)

 max[1, 900, min[9, 800, 0.125 · (y + 0.04 · a)]]

max[0 , min[27, 000, 0.75 · (yAT + 0.04 · a − 4, 500)+]]

(low co-pay)

(high co-pay)

The main difference between the two co-payment types stems from the cap on co-

payments, e9, 800 vs. e27, 000, and the co-pay rate on income: 0.125 vs. 0.75. Also,

note that contrary to low-rate co-payments, high-rate co-payments depend on income

after taxes yAT = y − τG − τSS − τL. Lastly, 4% of the assets contribute to co-payments,

implying endogenous co-payments in the model. In 2013, a policy change imposed an

additional 8% of the assets to count for the co-payments. However, we stick to the 4%

because that spans most of our sampling window (2006-2014).

Life cycle income: age 25 to 65 To estimate the income shock process (yt), we

use income data available for a representative sample of about 1% of the households

(the IPO sample). In this sample, we have information on the distinct categories that
4We keep the formula simple for computational reasons, but the system is more complex in practice.

Income and assets are measured with a two-year lag, implying we would have two additional state
variables in our model. A low co-pay rate applies for the first four months of an institutional stay,
which we cannot measure with our model specified at the year level instead. Also, there is an asset
exemption of about e21, 000 and e42, 000 for singles and couples, but we follow Wouterse et al. (2021)
and (partially) replace this with a general exemption of 0.75× e4, 500 for the high co-payment.
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comprise household income (the IPO sample), including taxes and private and public

pension benefits. The data are available for a longer period than the data for the

health processes: 2001-2014. A longer sampling window is important for estimating the

persistence, i.e. longstanding effects, of income shocks.

We observe pre-tax income aggregated to the household level, including social transfers

and pension income. This income definition also includes taxes for first pillar pension

income and LTC provision, and a general income tax but excludes other dedicated taxes,

e.g., for unemployment insurance. We only include the income of the household head

and the partner (if applicable) and exclude the income of other household members.

The variables are normalized to base year 2015 with the Consumer Price Index.

To abstract from early retirement decisions and schemes, we restrict our sample to

couples whose oldest member is born after 1949 and whose primary income source is

not retirement income. Further, we only include income above the government-provided

safety net (welfare level): y > y = e15, 600 (2010-level). y is a government-provided

income floor, equivalent to a consumption floor, as in, e.g., De Nardi et al. (2024).

We follow Storesletten et al. (2004) for the estimation of the income shock process. We

estimate the age effect αt and productivity effect θi by running a fixed effects regression

of log income on age dummies (one for each log(αt)) and a household fixed effect (θi):

log(yit) = log(αt) + θi + ηit + ϵit, (4.2a)

where i indexes a household and t the age of the oldest household member.

Ideally, our household-specific estimate θ̂i excludes birth year effects. To wash out

cohort effects, we run the following OLS regression of the predicted productivity effects

on birth year dummies (cf. French, 2005; De Nardi et al., 2024):

θ̂i = c + θc + θ̃i, c ∈ {1951, .., 1990}, (4.2b)

where c is the cohort effect of birth year 1950, c + θc is the cohort effect for birth years
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1951-1990, and residual θ̃i is the household productivity effect excluding a cohort effect.

We use θ̃i as the household-specific productivity effect.5

Next, we estimate the parameters of the income shock θi + ηit + ϵit: ρ, σθ, σu, and σϵ.

To this end, we construct the empirical auto-covariance matrix of the predicted residuals

of θ̃i + ηit + ϵit from (4.2a) and (4.2b), and match them to the auto-covariances implied

by equation (4.1). Appendix D.2.4 further explains the GMM procedure and shows the

fit.

Table 4.2: Parameters of the AR(1) Income Process

Parameter: ρ σθ σu σϵ

0.966 0.184 0.131 0.166
(0.004) (0.028) (0.008) (0.003)

Notes: Estimates for married households whose oldest member is younger than age 65 and born
after 1949. Data from IPO 2001-2014: 77,118 households and 534,006 panel-year observations.
Standard errors in parentheses.

Table 4.2 provides the results on the income shock. The estimated parameters align

with results in the literature (Storesletten et al., 2004; Karahan and Ozkan, 2013;

Blundell et al., 2015; Paz-Pardo and Galves, 2023). This also holds for the high income

persistence ρ = 0.966 we estimate: income shocks have longstanding effects.

Life cycle income: after age 65 In the Netherlands, first pillar pension income is

independent of income history {ys}64
s=25 but linked to minimum wage w. For couples,

the benefit level is minimum wage (SS = w). For singles, the benefit level is 70% of the

couple’s benefit (SS = 0.7w). As minimum wage we take the 2010-value: w = e18, 240.

A household in the model is also entitled to a second pillar pension benefit DB65,

which is linked to the history of income shocks {ys}64
s=25. In practice, the first and second

pillar aim to replace about 75% of the average individual-earned income or obtained

disability insurance income (Knoef et al., 2017).6 We assume the same replacement

rate and benefit formula at the household level. The second pillar pension income is
5Appendix D.2.3 shows the model estimates for the age profile {c + log(αt)}64

t=25.
6We keep the formula simple for computational reasons, but the system is more complex in practice.
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only accrued over the income yt that exceeds 100
75 · SS because social security benefits

are sufficient to replace the income below this level. The evolution of the second pillar

pension benefit is:

DBt+1 = DBt + 1
40 · 0.75 · min

(
yt − 100

75 · SS ; 0
)

if t ≤ 64,

where the factor 1
40 makes sure we take a 40-year average of pre-tax household income.

Together, first and second pillar pensions compose income after retirement (t ≥ 65):

yt(DB65, f) = yt({ys}64
s=25, f) =


w + DB65, if f = couple

0.7w + rrw · DB65, if f = single woman

0.7w + rrm · DB65, if f = single man.

If a spouse dies, rrw and rrm convert a couple’s pension benefit into a widow(er)’s pension

benefit. Using the IPO data, we find rrm = 0.93 (SE: 0.001) and rrf = 0.55 (SE: 0.005).

In line with our earlier work van der Vaart et al. (2020), we report rrm > rrf implied by

that men were the prime earner in the households and pension benefits mostly accrued

to them. Appendix D.2.5 contains the estimation details.

A crucial variable in our model is lifetime income quintile I, which determines

the health risks after retirement. We take DB65 as the model-equivalent level of

lifetime income, which is exogenous because households do not decide on labor supply.

Consequently, we can compute the quintiles of the distribution of DB65 without running

the life cycle model. Next, when running the life cycle model, we use the quintiles and

realization of DB65 to assign households a lifetime income quintile group.

Taxation We estimate the tax function τSS(y), τL(y, f, t) and τG(y, f, t) by regressing

observed tax amounts in the IPO on household income according to a log-linear and

sigmoid specification. We apply non-linear least squares estimation and estimate the

functions separately for households below and above age 65 and for single and married

households. Appendix D.2.6 reports the specifications and estimates.
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Remaining calibrations Table 4.3 displays the remaining first-stage parameters.

Table 4.3: Other First-Step Parameters

Symbol: Value: Source:

Relative risk aversion σ 3 Several empirical studies1

Interest rate r 0.02 The average interest rate on
savings 2006-20142

First pillar pension benefit w e18,240 2010-level
Yearly LTC cost per user (e) LTCcost e58,500 van Ooijen et al. (2015)

Notes: 1 See estimates by Cagetti (2003); De Nardi et al. (2010); Lockwood (2018); 2 See DNB
Statistics: https://www.dnb.nl/statistieken/dashboards/rente/ [retrieved on: August 7th, 2023]

4.4.2 Second-Step Estimation

In this step, we apply the method of simulated moments (MSM) estimation to match

asset moments in the administrative data with moments simulated with the life cycle

model (see, e.g., De Nardi et al., 2010; Lockwood, 2018; De Nardi et al., 2021). Using

our estimated first-stage parameter vector χ, we try to find preference vector δ ∈ ∆ that

yields model-generated asset profiles that ‘best match’ observed asset profiles. We do

the matching by applying standard generalized method-of-moments (GMM) techniques.

For the empirical moments, we use the same population and lifetime income quintiles

that we used to compute the health process in Section 4.2, i.e., households whose

members are aged older than 65 and were married at age 65. Following seminal work on

the elderly’s asset holdings (De Nardi et al., 2010; Ameriks et al., 2020; Nakajima and

Telyukova, 2024), we take net worth as our measure of wealth. This is the total assets

minus mortgages and other debt. Total assets are defined as the sum of the values of

checking and savings accounts, risky assets (stocks and bonds), business wealth, the

owner-occupied house, other real estate, and other assets such as cash-on-hand. The

value of risky assets is normalized with the Amsterdam Exchange close index (AEX) on

31/12/2014, the owner-occupied house and other real estate with the house price index

(base 2015), and debt and amounts deposited in checking and savings accounts with the

Consumer Price Index (base 2015).

https://www.dnb.nl/statistieken/dashboards/rente
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To prevent an overly complex model, we do not separately treat financial wealth and

net housing wealth, i.e., the total value of real estate minus outstanding mortgage debt.

The co-payments are, however, based on financial wealth and exclude housing wealth in

practice. We assume that households liquidate their housing wealth (sell their house)

once they enter a public care institution. Hence, net worth and financial assets coincide.

We base our estimator on the age profile of the median net worth of married and single

individuals between ages 65 and 100 by lifetime income quintile I, implying 2 × 36 × 5 =

360 moment conditions. We do not consider matching means (cf. De Nardi et al., 2010)

because these empirical moments are sensitive to outliers, thereby driving estimation

results. Furthermore, we restrict the analysis to matching the asset distribution after

age 65 because our studied welfare effects primarily occur after this age.

However, similar to estimating the income processes before age 65, we must first

deal with cohort effects to observed asset profiles. We similarly account for this as

specifications (4.2a) and (4.2b) do for the income process. To stay as close as possible

to the 1950 cohort for which we estimated the income process, we made the assets

representative for a reference group of households born between 1945 and 1949. Appendix

D.2.7 provides details about how we econometrically deal with the cohort problem of

assets.7

We compute the moments also for our simulated sample and compare them with the

data moments using the objective function:8

K=360∑
k=1

[(
Md

k − Ms
k(χ̂, δ)

)2]
,

with K = 360 moments, and where Md
k and Ms

k are the k-th data and simulated moment.
7The regressions involve the logarithm of assets, so we only keep non-negative assets. Furthermore,

the regression is prone to outliers, so we drop assets above e2, 500, 000. We drop 0.9% of the households
and 2.6% of the panel-year observations because of these restrictions.

8Instead of matching medians directly, existing work (e.g. Cagetti, 2003) looks at how many
households in the observed population have assets below the simulated median, which is ideally 50%.
This means that at each iteration, we would have to use our administrative data to determine how many
individuals have assets below the group-specific simulated median, which is computationally expensive.
That condition and our condition are equivalent at the true value δ so we choose our current approach.
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Our estimator δ̂ minimizes this quadratic distance between the empirical and simulated

data moments. We do not weight each moment with an asymptotically optimal weight

matrix, implying we have less efficient estimates. Instead, efficient estimates would

follow from taking the densities evaluated at the median as weights (Powell, 1994), but

estimating these weights is computationally too expensive.9

The procedure can be summarized as follows. We first estimate asset profiles from

the administrative data. Second, we estimate the unknown parameters for the first

stage. Then, we take the first-stage calibrations χ̂ and a given parameter value δ̃ and

run the life cycle model. We store the decision rules of the life cycle model. We know

the steady-state distribution of individuals over the state variables and can compute

the simulated asset moments from that (see Appendix D.1.4 for the computation of the

distribution). Hereafter, the value of the objective function is computed. Lastly, we

compute a new ‘optimal’ preference vector using a Gauss-Newton regression and repeat

the procedure until parameter vectors of two consecutive iterations are arbitrarily close.

See Appendix D.3.1 for the computation of the standard errors.

Lastly, we calibrate b, a crucial parameter when examining the welfare implications of

shortening and extending lifespans (cf. Hall and Jones, 2007). Our additive speciation

implies that b does not depend on the consumption and saving decision, so we do not

have to jointly estimate this parameter with the other preference parameters, but rather

calibrate it conditionally upon them. We tailor the parameter to the group that has

the lowest-per-period utility in our population: retired singles without private pensions

(DB65 = 0). We set b = − c1−σ

1−σ = 0.3114, where c = 0.7w = e12, 768 is their consumption

level (in 0000s e) and implying this group has zero utility from consumption. In a

similar spirit, De Nardi et al. (2024) used an estimated consumption floor to pinpoint b.

Because we tailor b to the lowest consumption level, our estimated welfare gains from

living longer will be a lower bound to the true effect.
9We also tried inverse-variance weighting (cf. Altonji and Segal, 1996). However, this implied

non-sensible estimates as there are extremely large weights for low compared to high lifetime income
quintiles.
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4.4.3 Model Identification

β is identified by the shape of the age profile on assets: higher β implies a stronger

preference for future consumption and thus more saving. In addition, the Euler equation

provides intuition for the identification of preference parameters on bequests ϕ and ca,

and equivalence scaling η in our model. To see how this works for η, suppose a simple

model without bequests of a married household in period t, that will be not be married

in period t + 1 anymore. If the sole uncertainty is death, then the Euler equation implies

the following consumption growth:

log
(

cS
t+1
cM

t

)
= log

(
cS

t+1
)

− log
(
cM

t

)
= − log(η) + 1

σ
· (log(β) + log(1 − π3,3) + log(R) − log(2)) ,

where cS
t+1 is consumption when single, and cM

t is consumption when married. Here,

higher η (less economies of scaling) implies more consumption spending cM
t when married,

so lower savings when married. Hence, we identify η by comparing asset levels of married

and single households of a given lifetime income quintile at two consecutive ages.

Also, the Euler equation shows a complication when having to estimate β and σ.

Their joint effect on savings would be 1
σ · log(β), making it impossible to separately

identify the two when studying a given asset level. Therefore, we follow Ameriks et al.

(2011) and fix σ = 3, a value common in retirement-savings literature (e.g. De Nardi

et al., 2010).

Lastly, to see how the bequest parameters are identified, we consider a single household

that knows to die next period, does not subjectively discount utility from consumption

c, and obtains utility from leaving a bequest a (ca > 0 and ϕ ∈ (0, 1)). Assume that the

household has cash-on-hand µ, then the decision problem is:

max
c,a

uS(c) + B(a) = max
c,a

c1−σ

1 − σ
+ b + ϕ

1 − ϕ

σ

·

(
ϕ

1−ϕ · ca + a

)1−σ

1 − σ
, s.t. µ = a + c.
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The Euler equation with bequests is:

c−σ = ϕ

1 − ϕ

σ

·

(
ϕ

1 − ϕ
· ca + a

)−σ

, s.t. c = ca + (1 − ϕ) · µ and a = ϕ · (µ − ca),

so in optimum households equate the marginal utility from bequests and consumption.

Increasing ca one-to-one increases consumption c, and one-to-one decreases the bequest

size a. ca is thus a terminal wealth level that must be met before a household intends to

leave a bequest (bequests are luxury goods).10 The likelihood of meeting this criterion

is larger for higher lifetime income quintiles, from whose terminal assets we identify ca.

Furthermore, ϕ is the share of excess wealth they leave as a bequest. We identify ϕ by

comparing the steepness of the asset profile for this group with µ > ca compared to the

groups with insufficient wealth µ ≤ ca, i.e. groups with low lifetime income.

4.5 Second-Step Estimation Results

Figure 4.1 shows the empirical and simulated moments for our closest match. For

exposition, we connect the moments with a line. Overall, we have a reasonable fit: we

match the positive correlation between the level of assets and lifetime income quintile

and the asset decumulation pattern after age 65. We also mimic the empirical artifact

that households in the top income quintile die with substantial assets, i.e., leave a

bequest. Our model is less capable of matching the low asset holdings for the bottom

and second income quintile, which could be explained by that these groups contain

relatively many hand-to-mouth consumers and have lower discount rates (Cherchye et al.,

2023). However, introducing heterogenous preferences would make it less clear where a

welfare redistribution stems from and abstracts from the standard in the retiree’s saving

literature that we stick to, i.e. a parsimonious model with homogenous preferences

(De Nardi et al., 2010; Ameriks et al., 2020). Yet, the general picture of asset profiles

seems to be reproduced by our MSM estimation, making us confident in using our

estimated life cycle model for further inference.
10In the model, the survival probability is below unit value, so ca refers to annuitized cash-on-hand

rather than the level of cash-on-hand.
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Table 4.4 presents the results of our preference parameter estimation. We estimate

β̂ = 0.960, implying that households have a moderate preference for current over future

consumption. The estimated bequest utility indicates a strong saving motive, where

bequests are luxury goods (ĉa = 40, 672 > 0). We find the extreme case of ϕ̂ = 1,

implying a linear bequest function, and all excess wealth is put into a bequest and not

consumed. A high bequest propensity (ϕ > 0.88) is common in the revealed preferences

literature (De Nardi et al., 2010; Lockwood, 2018; De Nardi et al., 2024), while the stated

preference literature finds lower values (ϕ̂ > 0.48, see, e.g. Ameriks et al., 2020). Our

threshold consumption level ĉa= 40, 672 is close to De Nardi et al. (2010), who report

ĉa= 34, 000, and slightly higher than other related studies (Lockwood, 2018; De Nardi

et al., 2024).

Table 4.4: Estimated Structural Parameters

Discount factor Bequest utility Equivalence scale Government transfer
β ca ϕ η TrSS TrLT C

0.960 40,452 1.000 1.145 783.58 -433.05
(0.00002) (1.03844) (0.00054) (0.00010)

Notes: *p < 0.1, **p < 0.05, ***p < 0.01. Standard errors in parentheses. The data contain
1,471,858 households and 11,471,725 panel-year observations.

We find an equivalence rate of η̂ = 1.146, which is lower than the commonly applied

and estimated OECD-modified equivalence scale of 1.5 (for the life cycle model estimate,

see, e.g., De Nardi et al., 2021). Lower equivalence scales are, however, also reported

in the consumption-expenditure literature (see, e.g., Donaldson and Pendakur, 2004).

Using the Euler equations from Section 4.4.3, our model predicts more savings than

would be predicted if we take the OECD-modified equivalence scale η = 1.5. Hence,

households in the Netherlands have relatively high economies of scale, implying they

can save more.

The additional tax for singles to balance the government budget is T̂r = T̂rSS+T̂rLTC =

783.58 − 467.26 = e316.32 (for couples, this is double the amount). This consists of

an additional tax to finance the first pillar pension (T̂rSS > 0) and a subsidy to finance
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4.6. Welfare Gain due to Lower LTC use and Mortality 111

the LTC system (T̂rLTC < 0). Given the low amounts we are talking about, we can

think of these transfers reflecting measurement error due to calibration of the first-stage

parameters.

4.6 Welfare Gain due to Lower LTC use and Mortality

In this section, we closely follow De Nardi et al. (2024) and use the estimated life

cycle model to quantify the welfare gain arising from socioeconomic differences in LTC

use and mortality (cf. Table 4.1). In the first step, we compute the monetary gain

for any lifetime income quintile by counterfactually assigning them the health risks of

the lowest lifetime income quintile. Besides, we evaluate the total welfare gain with

a Willingness-To-Accept (WTA) metric that includes a non-monetary gain linked to

reaching higher utility: the compensated consumption equivalence. As a final step, we

utilize the unique feature of life cycle models that allows us to quantify the extent to

which saving for a bequest and the existence of LTC co-payments contribute to the

observed WTAs.

4.6.1 Counterfactual Analyses

At age 65, households draw an LTC use and mortality risk profile that depends on

their lifetime income quintile, denote this baseline scenario by BS. We also have a

counterfactual scenario, denoted by CF , where each household draws the health risks of

the lowest lifetime income quintile, so health risks are homogenous. The counterfactual

implies that higher lifetime income quintiles live shorter, so have lower lifetime retirement

income, and have higher lifetime LTC use, so have higher lifetime co-payments for LTC.

Furthermore, lifetime co-payments will be different under the counterfactual due to the

endogeneity of assets. Lastly, lifetime government-balancing transfers will be different

due to lower longevity and because we will re-calibrate T̂rSS and T̂rLTC to also match

the government budget under the counterfactual.

We compute the net present value of retirement income net of co-payments and

government-balancing transfers and take the difference between baseline and counter-
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factual scenarios as the monetary gain from heterogeneous health risks. We do this for

each lifetime income quintile separately. In concordance with LTC use and mortality

risk starting, we measure the net present value at age 65. For the two cases, denote with

yBS(ℵt) and yCF (ℵt) the net incomes for a household aged t ≥ 65 with state vector

ℵt. Denote E65(yBS(ℵt)) and E65(yCF (ℵt)) their expected values measured when the

household is 65. These expectations are unconditional upon survival after age t ≥ 65

and thus include differential mortality. The difference E65(yBS(ℵt)) − E65(yCF (ℵt)) is

the contribution of age t to the monetary gain, and the expected lifetime income gain is

the sum of the age-specific gains:

100∑
t=65

E65(yBS(ℵt)) − E65(yCF (ℵt))
(1 + r)t−65 , (Monetary gain)

where we deflate the income stream to age 65 with an interest rate of r = 0.02. Apart

from this level estimate, we will decompose the monetary gain into parts stemming from

pension income, LTC co-payments, and government transfers.

Because our counterfactual affects consumption decisions, and bequest decisions, and

the utility of life expectancy, we follow De Nardi et al. (2024) and adopt the compensated

consumption equivalence λc as a measure for the welfare gain. This measure is the

minimum percentage points increase in counterfactual consumption that a household

requires to prefer (accept) the ‘worse’ counterfactual over the baseline case, hence a

Willingness-To-Accept (WTA).

Formally, the expected lifetime utility at age 65 in the baseline scenario, value function

V BS
65 , is defined as:

V BS
65 :=

100∑
t=65

β̂t−65 ·
{
E65

(
u(cBS

t (ℵt))
)

+ β̂ · E65
(
B(aBS

t+1(ℵt))
)}

=
100∑

t=65
β̂t−65 ·

E65

(1 + 1(ℵt))

(
cBS

t (ℵt)
η̂(ℵt)

)1−σ

1 − σ
+ b

+ β̂ · E65
(
ĉa

−σaBS
t+1(ℵt)

) ,

which is the sum of expected lifetime utility from consumption and bequeathing. cBS
t
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and aBS
t+1 are optimal consumption and a bequest at age t and t + 1 for a household

endowed with state vector ℵt. Note bequest utility is linear in assets because we estimate

ϕ̂ = 1.

Similarly, we determine the optimal consumption cCF
t , bequests aCF

t+1, and value

function V CF for the counterfactual case:

V CF (λc) :=
100∑

t=65
β̂t−65 ·

{
E65

(1 + 1(ℵt)) ·

(
(1+λc)·cCF

t (ℵt)
η̂(ℵt)

)1−σ

1 − σ
+ b


+ β̂ · E65

(
ĉa

−σ · aCF
t+1(ℵt)

)}
.

We find WTA λc by solving: V CF (λc) = V BS
65 . Without compensating (λc = 0), we

expect less lifetime utility in the counterfactual scenario: V CF (0) < V BS
65 . Because the

utility is increasing in consumption, we have ∂V CF (λc)
∂λc

> 0, and thus require λc > 0 to

have V CF (λc) = V BS
65 . λc > 0 represents the welfare gain: the closer this number is

to zero, the smaller the welfare gain for the lifetime income quintile. Due to different

deflation, we cannot directly compare λc to the monetary gain within a lifetime income

quintile: monetary gains are obtained by using discount factor 1
1+r , while λc is obtained

by using discount factor β̂ < 1
1+r .

In a final step, we look at the impact of LTC co-payments and saving for a bequest

on the WTA. To this end, we one-by-one remove LTC co-payments and saving for a

bequest (ϕ = 0) for the baseline case and recompute optimal cBS
t and aBS

t+1, so V BS
65 . For

the counterfactual, we keep cCF
t and aCF

t+1 fixed and find λc that solves V CF (λc) = V BS
65 .

4.6.2 Results

The first two lines in Table 4.5 show the average gain in lifetime income if health risks

differ by lifetime income quintile, i.e., higher lifetime income quintiles use less LTC and

live longer. The pecuniary gain per income group reveals a gradient favoring higher

lifetime income quintiles. However, this result is incomplete because higher lifetime

income quintiles by construction have higher absolute gains due to higher yearly income.
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To back out level effects, the second row shows the gain relative to group-specific lifetime

income under the counterfactual. The result confirms the gradient: the gain is −0.2%

for the bottom income group and 11.0% for the top income group, a difference of 11.2pp.

When discussing welfare gains, we prefer the first-differenced estimate of 11.2pp.,

which accounts for the fact that bottom income groups, despite unchanged health risks,

still loss or gain welfare under the counterfactual. The bottom income group namely

loses 0.2% of lifetime income due a re-calibration of T̂rSS and T̂rLTC. This gain is not

directly linked to differences in health and is common to all income groups, and therefore

we prefer the first-differenced estimate of 11.2pp.

With shares over 90%, we see that pension income is the largest contributor to the

pecuniary gain for a lifetime income quintile. The role of LTC co-payments is non-

negligible for the highest lifetime income quintile and explains 10.6% (e10, 878) of their

pecuniary gain. As a side-remark, the co-payments make up a small yet negative share

for the second lifetime income quintile because their baseline LTC use is higher than

under the counterfactual (see Table 4.1).

Table 4.5: Monetary and Welfare Gains Due To Socioeconomic Differences in LTC Use
and Mortality: Levels and Decomposition

Lifetime income Bottom Second Third Fourth Top ∆Top-
quintile Bottom

Monetary gain (e) -917 14,075 26,864 49,812 102,474 103,391
Monetary gain1 (%) -0.2 3.2 5.2 8.0 11.0 11.2

Contribution to monetary gain2 (%)
Pension income 0.0 112.2 103.3 96.8 91.3 -
Co-payments 0.1 -2.8 2.3 6.8 10.6 -
Government transfers Trx 99.9 -9.4 -5.6 -3.5 -1.9 -

WTA3: λc × 100% -0.2 0.8 2.9 7.9 23.2 23.4
No bequests (ϕ = 0) -0.5 0.1 1.7 4.9 0.7 1.2
No co-payments 2.4 3.6 5.6 10.4 24.2 21.8
No co-payments and bequests 2.3 3.4 5.1 8.7 3.3 1.0

Notes: 1 Expressed as a percentage of counterfactual lifetime income after age 65; 2 Gain
of the particular income source in es as a share of the monetary gain in es (first row); 3

Willingness-To-Accept

The WTA confirms higher welfare gains for higher lifetime income quintiles, but what
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explains the gap of 23.4pp.? If we assume away saving for a bequest, the gap in welfare

gain (WTA) between the top and bottom lifetime income quintiles shrinks from 23.4pp.

to 1.2pp.. Hence, higher lifetime income quintiles benefit less from higher longevity and

lower LTC use if they cannot save for a bequest. Their welfare gain dropped from 23.2%

to 0.7% because they will not spend the additional lifetime income on their otherwise

highly-valued bequests. On the contrary, lower lifetime income quintiles experience a

much smaller drop in welfare gain because they value leaving bequests –luxury goods–

much less. As a result, the difference in welfare gain between the top and bottom lifetime

income quintile shrinks tremendously.

On the other hand, the gap between the top and bottom income groups remains a

considerable 21.8pp. when we leave out LTC co-payments. Differences in co-payment

duration are thus less important than a bequest to explain the excess welfare gain of

the top lifetime income quintile. The gap remains large because LTC co-payments are

a relatively small share of lifetime income gains (Row 4, Table 4.5). Moreover, higher

lifetime income quintiles still receive the additional retirement income, which they can

spend on –for them valuable– bequests.

Note that if we abolish LTC co-payments in the baseline scenario, any group experiences

a welfare gain, which is good from a social planner’s perspective. While their risks are

not altered, the bottom lifetime income quintile has a welfare gain 2.4% because LTC

co-payments are replaced by a higher transfer (tax) T̂rLTC that is paid unconditionally

upon LTC use. Lower socioeconomic groups can spend the otherwise co-paid resources

on consumption, while the same is true for the higher socioeconomic groups who can

additionally spend it on for them valuable bequests.

If we simultaneously assume away saving for bequests and LTC co-payments, we find

welfare gains that are in between singling out only one of the two channels. In line with

the evidence above, for lower lifetime income quintiles, the gain is closest to the case of

singling out LTC co-payments only. In comparison, for higher lifetime income quintiles,

the case is closer to singling out bequests only, as these are more valuable for them.
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4.7 Discussion and Conclusion

We evaluate the welfare gain that Dutch households with higher lifetime income ex-

perience due to using less long-term care (LTC) and living longer. To this end, we

estimated a life cycle model on singles and couples’ consumption and saving behavior,

including idiosyncratic risks on income, LTC use, and mortality. We calibrated the

model to match Dutch administrative data on asset holdings from 2006-2014. Using

the estimated model, we conducted three counterfactual experiments to quantify and

explore possible channels of the welfare gain: (1) assign each household the LTC use

and mortality risk of the bottom lifetime income quintile, (2) additionally remove a

preference for bequest saving, and (3) replace co-payments for LTC with a fixed tax

that is paid unconditionally upon using LTC.

Our findings highlight a sizeable excess welfare gain of 23.4pp. higher consumption

for the highest lifetime income quintile if their health follows the true process rather

than the counterfactual one. The large welfare gain for the top lifetime income quintile

can almost exclusively be attributed to their preference for leaving bequests: the welfare

gain reduces to 1.2pp. if households would not hold a preference for bequest saving. Our

ranking exercise shows that LTC co-payments are less important when explaining the

excess welfare gain: the gap remains 21.8pp..

The estimated welfare effects should be interpreted as a lower bound estimate because

we calibrate the utility of remaining life-expectancy b at the lower end of possible values.

This seems a sensible choice as Hall and Jones (2007) show that lower values of b better

match healtcare expenditures in the U.S.. Yet it must be said that, in line with Hall

and Jones (2007) and our own computations (available upon request), the estimated

welfare effects are sensitive to higher choices of b.

In line with our findings, earlier work emphasized that modelling bequest saving is

crucial for understanding the asset holdings of the income- and asset-rich (De Nardi

et al., 2010). However, earlier work is primarily conducted in the U.S., where public LTC

provision is less generous: savings data alone need not separately identify precautionary
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and bequest motives because wealthier households simultaneously save assets for both

uses (Dynan et al., 2004). Our study is one of the first attempts to estimate the bequest

saving motive in a country where precautionary saving is less important, and thus saving

data alone could suffice. From our findings, we conclude that the estimated preference

for bequest saving seems consistent across countries and estimation strategies.

For policy design, we can conclude that higher taxes on bequests could be a way to

introduce more actuarial fairness into the system of old-age social insurances. Along the

spectrum of other possible policy interventions, having social security benefits tailored

to the career length is another way to increase actuarial fairness because the working

life of shorter-living (lower) lifetime income quintiles usually starts at younger ages.

While our findings opt for those kinds of policies, we keep the quantitative importance

of these alternative policy proposals and their interaction with heterogenous mortality

and LTC use for future work (see Bagchi (2019) for an example involving differential

mortality only). In that case, there should be paid more attention to the working age

stage than we do, because reforming the system makes precautionary saving and tax

contributions increasingly relevant. Also, when assessing different retirement policies,

we might have to extend the life cycle model with endogenous health and labor supply

decisions and health-dependent utility (cf. French, 2005; Finkelstein et al., 2009). In

our specification, we pursue parsimony and thus treat health as exogenous and do not

model labor supply explicitly. That does not mean we entirely ignore these variables;

the income risk reflects them and, therefore lifetime income status at age 65.

Besides, future research could estimate the effects of changing the LTC insurance

system besides the co-payments. In doing so, we can assess whether our studied welfare

gains are larger in a system with exclusively private LTC insurance or a mix of public

and private LTC insurance. Lastly, future research can include other behavioral frictions

that likely matter for evaluating of the impact of bequests. The typical frictions that

one can think of are taxes on bequests, taxes on capital gains, and trade-offs between

leaving bequests and inter-vivos transfers, which are not part of our model.
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Chapter 5

Estimating Left-truncated Shared Frailty

Models

This chapter is joint work with Gerard J. van den Berg from the University of Groningen, University
Medical Center Groningen, IFAU Uppsala, and IZA. The authors thank Rob Alessie for helpful comments
when developing the programming software. The syntax is available upon request.
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5.1 Introduction

Hazard rate estimation is widely applied in research on event times in various social,

behavioral, and medical sciences disciplines.1 Hazard rate models apply when subjects

experience single or repeated events, e.g., the time between subsequent COVID-19

infections, or where events involve a cluster, e.g., the times until the other household

members are infected. Correlations across hazard rates due to common characteristics,

e.g. being vaccinated, should be accounted for when doing statistical inference (van den

Berg, 2001). However, part of the common characteristics is often unobserved, and

ignoring the unobserved heterogeneity leads to biased inference. The way to account

for the bias is to augment the hazard rate specification with a random effect ν, called

frailty, that is common across grouped data of size J : a shared frailty model.2

Due to a sampled subpopulation, hazard rate models can suffer from sample selection

problems akin to truncated regression models. While inflow samples comprise a random

draw of the population at inflow into the state of interest, selective left-truncated

samples arise if subjects are only drawn when sufficiently long in the state of interest,

e.g., in population data, where exits before a particular date are typically not observed.

Left-truncated subjects have favorable characteristics (low ν) for a high event time.

Several empirical studies ignored the dynamic selection due to left truncation, implying

underestimated time effects and covariate impacts suffering from attenuation bias, as

shown by van den Berg and Drepper (2016) for a case with two shared spells (J = 2)

and time-invariant covariates. In turn, accounting for time-varying covariates requires

observing the entire covariate history or making identifying assumptions, especially on

the unobserved part of the covariate history (Lancaster, 1990).

In this chapter, we build upon van den Berg and Drepper (2016), and analyze the

bias if dynamic selection due to left truncation is ignored and frailty is shared among

more than two spells (J > 2). First, we derive the theoretical conditional likelihood
1See Wang et al., 2019, for an overview of applications. Examples include the Bass diffusion model

(marketing, Gopinath et al., 2014), COVID-19 mortality (epidemiology, Baqui et al., 2020), and labor
market transitions (economics, Chodorow-Reich and Coglianese, 2021), among others.

2See Hougaard (2000) for an extensive description of shared frailty models.
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specifications lA, accounting for the dynamic selection implying unbiased estimates, and

lB, ignoring the dynamic selection implying possibly biased estimates. While van den

Berg and Drepper (2016) show that lB provides unbiased results if the dynamic selection

is absent, we derive a sufficient condition for lB to also imply unbiased results if the

dynamic selection is present but ignored when estimating. Subsequently, we quantify

the bias in parameter estimates with a Monte Carlo experiment employing several

data-generating processes, thereby tuning the number of shared spells and truncation

rates. In addition to left truncation, our likelihoods allow for time-varying covariates,

right censoring, an arbitrary number of shared spells, and group-specific time effects.

We implement both specifications in publicly available STATA software packages.3

We find that the dynamic selection can be ignored if the entry times in the observed

sample are zero. While this nests the case of an inflow sample, this setting also occurs if

only subjects with an entry threshold of zero are sampled. At this point, it is worth

highlighting that we look at a natural extension of the left truncation of single spells,

which restricts a subject only to be sampled if all its spells exceed a threshold. Ever

increasing the number of shared spells within a subject approaches the case of observed

entry times of zero because, ceteris paribus, more entry thresholds have to be met,

which is more likely if these thresholds are lower. This novel sufficient condition is good

news for researchers who ignore(d) dynamic selection due to left truncation in their

estimation.

Our Monte Carlo experiment provides supportive evidence by revealing an attenuation

bias to a time effect and covariate impact of 54% and 47% if there is one spell per subject

and a truncation rate of 0.5, declining to 2% and 3% if there are five spells per subject.

The biases are also smaller at lower truncation rates. At the same time, we find that

the frailty variance is underestimated by 59% for one spell per subject changing into an

overestimation of 27% for five spells per subject. The surprising bias at a higher number

spells is likely coming from the thresholds not being exactly zero while the observed

frailty distribution being highly selective.
3The programs are available upon request.
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In addition to these methodological results contributing to the presented literature,

our user-written STATA commands complement and contribute to the set of STATA- and

R-commands available to estimate shared frailty models. The most frequently used

package to estimate frailty models in STATA is streg (Gutierrez, 2002) with option

shared(), but in the presence of dynamic selection due to left truncation, this requires

frailty clusters to have a size of at most one (van den Berg and Drepper, 2016), as

is explained by STATA if the routine is called upon in such cases. As an extension,

van den Berg and Drepper (2016) offer STATA-code for clusters up to size two but not

beyond, and they do not allow for time-varying covariates. In R, the packages parfm,

frailtyEM, and frailtypack (Munda et al., 2012; Balan and Putter, 2019; Rondeau

et al., 2022) extend frailty to be shared within a cluster of arbitrary size. However, none

of these packages can properly deal with time-varying covariates, left truncation and

group-specific time effects simultaneously, which we do allow for in our code.4

In the remainder of this introduction section, we discuss some of the empirical

challenges that estimating a shared frailty model is exposed to. Then, the rest of the

article unfolds as follows. Section 5.2 derives the analytical likelihoods. In particular,

Section 5.2.4 provides the likelihood that accounts for dynamic selection due to left

truncation. Section 5.2.5 provides the Monte Carlo experiment. Section 5.3 discusses

and concludes.

5.1.1 Mixed Proportional Hazard Model with Shared Frailty

The Mixed Proportional Hazard model (MPH) is a commonly adopted approach to

model event time T with frailty, introduced in economics and demography by Lancaster

(1979), Nickell (1979) and Vaupel et al. (1979). MPHs fully characterize the distribution

of T . A MPH is as follows:

λ(t|x(t)) := lim
dt→0

P (T ∈ [t, t + dt) | T ≥ t, x(t))
dt

= ν · λ0(t) · exp(x(t)′β), with ν ∼ G(ν),

4See Balan and Putter (2019) and Gorfine and Zucker (2023) for recent overviews of R packages that
have the option to estimate shared frailty models.
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where λ is the number of transitions per time unit at time t. The proportional rate splits

up into a random effect ν, a time effect λ0(t), and a covariate effect exp(x(t)′β). The

random effect ν is the unobserved frailty term that can be shared within a group (cluster)

or across spells of a subject and follows some parametric distribution G. x(t) denotes

a time-dependent vector with impact β. For inference, the parameter vector β and,

to a lesser extent, baseline hazard function λ0 are most important.5 Without further

reference, we assume interest in the shape of λ0, implying that the functional form λ0

is also assumed and parameterized. The distribution of T is fully parameterized by

λ0, G and β, allowing us to estimate the unknown model parameters with full information

log-likelihood.6 The estimation is exposed to several empirical challenges that we will

discuss now.

Time-varying covariates x(t) provide a challenge that perhaps received less attention

than the other challenges addressed by our estimation procedure. Eventually, the

distribution of event times depends on the aggregated risk up to time t:
∫ t

0 λ(s | x(s))ds

(Lancaster, 1990). This sum consists of the risk that was experienced at each time

period, and explicitly depends on the different covariate paths of {x(s)}t
0 that subjects

went through. Contrary to hazard models without frailty, this aggregated risk is an

explicit part of the estimation procedure for shared frailty models.

Inference on hazard rates greatly benefits from time-varying covariates when meeting

some conditions. Notably, the time path x(t) has to be exogenous to t and ν. Also, the

hazard may not depend on the future path of x(t) if that path is unobserved for the

researcher (Kalbfleisch and Prentice, 1980; van den Berg, 2001). Lastly, to have no initial

conditions problem, we have to assume that we observe the full covariate path {x(s)}t
0

instead of only the partial path {x(s)}t
s>0 (Lancaster, 1990). If these assumptions are

satisfied, then time-varying covariates aid identification of λ0 and β (Honoré, 1993). For

now, we assume that the data meet these assumptions.
5Occasionally frailty is of prime interest, such as studies on extreme-age plateaus in human mortality

(Barbi et al., 2018).
6If the baseline hazard λ0 is not of interest, then λ0 can be unspecified and limited information

likelihood methods can be applied (cf. Cox (1972); Ridder and Tunali (1999)).
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Dynamic selection is addressed by including random effect ν. Dynamic selection

implies that as time ticks, the subpopulation of survivors changes in terms of observed

and unobserved characteristics, i.e. subjects with low ν remain longer in the state of

interest. If ν is omitted from the specification, then the estimate of λ0(t) reflects that

low ν remain longer. In general, the estimated slope of λ0 is downward biased. Moreover,

estimates of covariate impacts suffer from attenuation bias (Lancaster, 1990). We adopt

the often-used gamma distribution ν ∼ Γ
( 1

σ2 , 1
σ2

)
, with E(ν) = 1 and Var(ν) = σ2,

because of its good approximation for general G at high durations and mathematical

tractability in the likelihood function (Abbring and van den Berg, 2007).

Left truncation of events can exacerbate the survivorship bias of parameter estimates

due to dynamic selection (van den Berg and Drepper, 2016). Left-truncated subjects

are namely sampled with characteristics that favor high durations, including low ν,

because they have durations of at least t0 for some t0 > 0. To correct for the bias due

to left-truncated subjects, estimation procedures have to condition on survival up to

t0 rather than assume that the subjects at t0 are a random draw from the underlying

distribution of spell lengths.

Right-censored event times are a last source of bias to hazard rate estimation that

we allow for. Right censoring occurs if the event time is cut off at some date before

the actual event takes place, implying an unrepresentative sample of too short event

times. To this end, hazard rate estimation procedures adjust the likelihood contribution

of censored subjects to the likelihood of not having experienced the event before the

censored time; instead of that this is the date at which subjects experience the event.

5.2 Likelihood Function for Shared Frailty Models with

Left-truncated Data

5.2.1 Notation

We draw subjects from a population. Each subject, in turn, provides a sample of J spells

that are spent in some state of interest. The spell length is measured as the duration
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since the start time t = 0. However, a subject is only observed and included in the

data if each of the J spells satisfies the following constraint: the random length Tj of

spell j exceeds a certain amount of time t0j ≥ 0, with j = 1, . . . , J . Apart from this

observability constraint, we take the spells to be drawn from the inflow into the state of

interest.7 Let tj be the observed end time, with tj > t0j . We introduce binary variable

dj that reflects whether we observe the true spell end (dj = 1) or a right-censored spell

(dj = 0) at tj . Right-censored spells have an observed end time tj that lies before the

actual end time, for example, because the study ends before the event occurs.

Following Lancaster (1990) we use the following notation for covariates:

xj(t) := {covariate values of spell j at time t};

Xj(t) := {covariate path of spell j between 0 and t};

Xj := Xj(∞),

and if we consider all spells together, we have:

x(t) := {covariate values of all spells at time t};

X(t) := {covariate path of all spells between 0 and t};

X := X(∞),

where t is the collection of all observed times for the spells.

We allow the time effect λ0 in our specifications to depend on time-invariant covariates.

To this end, we introduce the covariate vector x̃j , which can be the same as xj(t). The

two vectors are already different if xj(t) contains at least one time-dependent covariate.
7This is the natural generalization of the concept of left truncation to the setting with multiple spells

per subject. In practice, other observation schemes may apply. For example, one may sample subjects
without restriction and subsequently only observe those K ≤ J spells for which the length t satisfies
t ≥ t0j . In that case, if the researcher knows J and t0, it follows that the J − K spells not meeting
this constraint are known to be left-censored at t0j , which is informative on the model parameters
of interest. Alternatively, one may sample subjects without restriction and continue sampling spells
satisfying t ≥ t0j until J of those are observed. In that case, spell lengths are left-truncated, but the
distribution of unobservables is as in the population of subjects. This constellation does not generalize
the concept of left truncation from a single-spell setting.
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5.2.2 Hazard Rate and Survival Probabilities

Integrated Hazard Rates

We are interested in the distribution function of event end time T , say F . Note that

F (t) = P(T < t) with F (0) = 0. Inherently, S(t) = P(T ≥ t) = 1 − F (t) is the survival

function. The survival function closely relates to hazard rate λ(t), which is the number

of transitions per time unit:

λ(t) := lim
dt→0

#Realized transitions between t and t + dt | T ≥ t

dt

= lim
dt→0

P(t≤T <t+dt)
dt

P(T ≥ t) = f(t)
S(t) .

The hazard rate λ intimately links back to the survival distribution S:

λ(t) = f(t)
S(t) = f(t)

1 − F (t) = −
∂1−F (t)

∂t

1 − F (t) = −∂ln(1 − F (t))
∂t

→

−
∫ t

0
λ(τ)dτ = ln(1 − F (t)) − ln(1 − F (0)) = ln(S(t)).

So:

P(T ≥ t) = S(t) = exp(−m(t)), with: m(t) =
∫ t

0
λ(τ)dτ,

implying that the survival probability solely depends on integrated hazard m, i.e. the

total hazard of having experienced the event before time t. Furthermore, a survival

probability S is fully characterized by the chosen hazard rate specification λ.

The Weibull and Gompertz are two common choices for the shape of hazard rate λ.

These specifications have duration dependence parameter γ that we will estimate. In

Table 5.1 we provide the hazard rate, integrated hazard, and survival distribution in

which these particular choices result. In this chapter, we restrict ourselves to these two

choices.

For inference, we must specify the hazard rate in the presence of covariates. To do so,
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Table 5.1: Characteristics of the Weibull and Gompertz Distribution (cf. Bender et al.,
2005)

Distribution
Weibull Gompertz

Hazard rate λ(t) γ · tγ−1 exp (γt)
Integrated hazard

∫ t

0 λ(τ)dτ tγ 1
γ · (exp (γt) − 1)

Inverse integrated hazard t
1
γ 1

γ · ln (γt + 1)
Survival function S = exp

(
−
∫ t

0 λ(τ)dτ
)

exp (−tγ) exp
(

1
γ · (1 − exp (γt))

)
γ (0, ∞) (−∞, ∞)\{0}

we follow Lancaster (1979) and use a mixed proportional hazard rate (MPH) specification.

Effectively, the hazard rate λ now depends on time tj , observed characteristics xj(tj)

and x̃j , and the unobserved term ν. A MPH model is as follows:

λ(tj , xj(tj), x̃j , ν) = ν · ϕ(xj(tj)) · λ0(tj , x̃j).

This specification features a part with a time-invariant impact, namely the proportional

hazard ϕ; a part containing the duration dependence or time effect, the baseline hazard

λ0; and a part containing random noise, the frailty term ν. For the proceeding, we

assume functional forms of λ0 to restrict to the shapes denoted in Table 5.1.

The derivations of the integrated hazard m and survival probability S are non-

standard because the integration should take into account that xj(t) also varies over

time. Specifically, we have to take the entire covariate path Xj into account when

integrating. Integrated hazard will thus be a function of Xj :

m(tj , Xj , x̃j , ν) =
∫ tj

0
λ(τ, xj(τ), x̃j , ν)dτ

= ν ·
∫ tj

0
ϕ(xj(τ)) · λ0(τ, x̃j)dτ

= ν · M(tj , Xj , x̃j), (5.1)

where integrated hazard splits into an unobserved part ν and observed part M .
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Conditional Survival Probabilities

The conditional survival probability of spell j becomes:

P(Tj ≥ tj | Xj , x̃j , ν) = S(tj | Xj , x̃j , ν) = exp(−m(tj , Xj , x̃j , ν))

= exp(−ν · M(tj , Xj , x̃j)).

Most important for further derivations is that this spell-specific probability contains

a distinct parts linked to unobserved heterogeneity, ν, and observed heterogeneity,

M(tj , Xj , x̃j).

Because frailty is shared across spells, we base our likelihood estimation on the

joint survival probability. To construct the joint conditional survival probability for

T = (T1, .., TJ), we assume that their realisations t = (t1, .., tJ) are independently

distributed conditional upon frailty. Given the earlier structure of the spell-specific

conditional survival probability, the joint survival probability depends on the collection

of covariate paths X, covariate vectors x̃, and frailty term ν. Consequently, the joint

survival function S(t | X, x̃, ν) is:

P(T ≥ t | X, x̃, ν) = S(t | X, x̃, ν) =
J∏

j=1
S(tj | Xj , x̃j , ν)) =

J∏
j=1

exp(−ν · M(tj , Xj , x̃j))

= exp

−ν ·
J∑

j=1
M(tj , Xj , x̃j)

 , (5.2)

which is the product of independent survival probabilities.

Unconditional Survival Probability

The conditional survival probabilities cannot be readily applied in likelihood estimation

because they depend on the unobserved term ν. To obtain a completely defined likelihood,

we first have to derive the unconditional survival probability with an assumed distribution

G for ν. For this derivation, we follow van den Berg and Drepper (2016) (note that they

do not consider time-varying covariates).
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For ease of derivation, we define the distribution of ν in general terms. Let ν have a

distribution that belongs to the exponential family. The probability density function of

ν, denoted by g(ν), then takes the following general form:

g(ν) = νζ · exp(−η · ν) · m̃(ν) · ϕ̃(ζ, η)−1, with: ϕ̃ > 0.

This family of frailty distributions has a unique Laplace transform, which is sufficient

for identifying the duration dependence λ0 and the time-invariant effect ϕ (Elbers and

Ridder, 1982; Honoré, 1993). The Laplace transform can be derived as follows:

∫ ∞

0
dG(ν) = 1 →

∫ ∞

0
g(ν)dν = 1 →

∫ ∞

0
νζ · exp(−ν · η) · m̃(ν) · ϕ̃(ζ, η)−1dν = 1

→ ϕ̃(ζ, η) =
∫ ∞

0
νζ · exp(−ν · η) · m̃(ν)dν.

Using the Laplace transform, the unconditional survival probability S(t | X, x̃) is:

S(t | X, x̃) =
∫ ∞

0
S(t | X, x̃, ν)dG(ν)

=
∫ ∞

0
exp(−ν ·

J∑
j=1

M(tj , Xj , x̃j)) · g(ν)dν

=
∫ ∞

0
exp(−ν ·

J∑
j=1

M(tj , Xj , x̃j)) · νζ · exp(−ν · η) · m̃(ν) · ϕ̃(ζ, η)−1dν

=
ϕ̃(ζ,

∑J
j=1 M(tj , Xj , x̃j) + η)

ϕ̃(ζ, η)
,

where we applied the Laplace transform in the last step.

We further assume that ν is gamma-distributed. For this to hold, take ϕ̃(ζ, η) =

η−(ζ+1) · Γ(ζ + 1) and m̃(ν) = 1, with ζ = 1
σ2 − 1 and η = 1

σ2 . The assumed gamma

distribution is useful because of its mathematical tractability and good approximation

for any conditional frailty distribution at long durations (Abbring and van den Berg,

2007). With these assumptions we have E(ν) = 1
1

σ2
· 1

σ2 = 1 and Var(ν) = σ2 ≥ 0. Using
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the gamma distribution, we obtain the following joint unconditional survival probability:

S(t | X, x̃) =

(∑J
j=1 M(tj , Xj , x̃j) + η

)−(ζ+1)
· Γ(ζ + 1)

η−(ζ+1) · Γ(ζ + 1)

=
(∑J

j=1 M(tj , Xj , x̃j) + η

η

)−(ζ+1)

=
(∑J

j=1 M(tj , Xj , x̃j) + 1
σ2

1
σ2

)−( 1
σ2 −1+1)

=

σ2 ·
J∑

j=1
M(tj , Xj , x̃j) + 1

− 1
σ2

= L

 J∑
j=1

M(tj , Xj , x̃j)

 ,

where L maps integrated hazard M into the joint unconditional survival probability.

This survival function nests a survival function without frailty, i.e. σ2 = 0. Note:

lim
σ2→0

σ2 ·
J∑

j=1
M(tj , Xj , x̃j) + 1

− 1
σ2

=

 lim
σ2→0

σ2 ·
J∑

j=1
M(tj , Xj , x̃j) + 1

 1
σ2


−1

= exp(−M(tj , Xj , x̃j)),

where the second step is the definition of an exponential number (see Simon and Blume,

1994). We find the same result using (5.2) if we impose ν = E(ν) = 1.

5.2.3 Analytical Log-Likelihood

We base the log-likelihood on survival probability S(t | X, x̃). For the construction of

the likelihood on actual observations, we have information on exact survival times tj

with event indicator Dj = 1, and information on censored survival times tj with event

indicator Dj = 0. Intuitively, censored times enter the likelihood function as survival

probability S(t | X, x̃), because they made it till that particular time but also beyond.

Uncensored times enter the likelihood by taking the partial derivative of 1 − S(t | X, x̃)

w.r.t. tj , i.e. the density evaluated at tj . Let D =
∑J

j=1 Dj be the number uncensored

survival times. Let L(D) denote the D
th−derivative of L. Then, the term that forms the

https://w.r.t.tj/
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likelihood is obtained from the chain rule on differentiation (cf. 7.6 in Hougaard, 2000):

(−1)D ·
J∏

j=1

∂M(t, Xj , x̃j)
∂t

∣∣∣∣∣
t=tj


Dj

· L(D)

 J∑
j=1

M(tj , Xj , x̃j)

 =

(−1)D ·
J∏

j=1
(ϕ(xj(tj)) · λ0(tj , x̃j))Dj · L(D)

 J∑
j=1

M(tj , Xj , x̃j)


where censored times only contribute to the second part of the multiplication. We used

expression (5.1) to arrive at the right-hand side. Note that the likelihood contribution

is not spell-specific, but defined at the subject level at which frailty is shared. As

a consequence, we take higher-order partial derivatives if multiple event times are

uncensored.

The likelihood function does account for right censoring, but not for left truncation

yet. We consequently have to condition the likelihood on survival up to time t0j . We

use the joint survival probability S(t0 | X, x̃) until the left truncation times t0 for this.

Then, the log-likelihood contribution for a subject consisting of J spells with shared

frailty:

l(t, t0, X, x̃) = ln

 (−1)D ·
∏J

j=1(ϕ(xj(tj)) · λ0(tj , x̃j))Dj · L(D)
(∑J

j=1 M(tj , Xj , x̃j)
)

S(t0 | X, x̃)


= ln

 (−1)D ·
∏J

j=1(ϕ(xj(tj)) · λ0(tj , x̃j))Dj · L(D)
(∑J

j=1 M(tj , Xj , x̃j)
)

L
(∑J

j=1 M(t0j , Xj , x̃j)
)



where the function L(D) is given by:

L(D)(y) = ∂L(y)
∂yD

= (−1)D·(σ2·y+1)− 1
σ2 −D·

(D−1)+∏
q=0

(qσ2+1), with y =
J∑

j=1
M(t0j , Xj , x̃j)

and whose complete derivation we provide in Appendix E.1.

Using the expression for L(D), the log-likelihood contribution becomes:
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Analytical Log-Likelihood Contribution for a Subject with J Spells and Shared Frailty ν:

l(t, t0, X, x̃) =
(D−1)+∑

q=0

ln(qσ2 + 1) +
J∑

j=1

Dj · ln(ϕ(xj(tj))) +
J∑

j=1

Dj · ln(λ0(tj , x̃j))

−( 1
σ2 + D) · ln

(
σ2 ·

J∑
j=1

M(tj , Xj , x̃j) + 1

)
+ 1

σ2 · ln

(
σ2 ·

J∑
j=1

M(t0j , Xj , x̃j) + 1

)
(5.3)

Notice that identification warrants that the values of the time-varying covariates

are observed before t0, which might for example be the case in retrospective studies.

Henceforth, we assume that these values are constant until and including the truncation

point t0j . A formal identification analysis of the model with left truncation is beyond

the scope of this chapter. However, it is clear that also requires an assumption on the

baseline hazard λ0 as a function of t on [0, t0j). In particular, one may assume that λ0

is constant until a point in time that exceeds the values of t0j for all j for every subject.

5.2.4 Method A: Accounting for Dynamic Selection due to Left

Truncation

In this part, we convert the analytical log-likelihood (5.3) into its counterpart with

parameterized functions. We aim to estimate the unknown parameters. For estimation,

we have developed a user-written command in STATA, which we discuss below and refer

as ‘Method A’. This method accommodates dynamic selection due to left truncation. In

Section 5.2.5, we contrast Method A to its counterpart ignoring the dynamic selection,

i.e. ‘Method B’.

Model Parameterization

We parameterize covariate impacts ϕ and duration dependence λ0 to infer them. To

this end, we assume ϕ has an unknown parameter vector β and λ0 and an unknown

parameter vector γ that we will estimate. In addition, we have to assume a functional

form of λ0. Table 5.1 provided the different choices that we can make for λ0.
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Mixed proportional hazard assumes a single-index and log-linear structure for ϕ:

ϕ(xj(t), β) = exp(θj1(t)), with: θj1(t) = xj(t)′β,

where the covariate impacts are exponentiated to yield positive hazard at any time t.

Due to this restriction, the impact of xj(t) on hazard ϕ has a relative risk interpretation.

Similarly, we restrict how duration dependence depends on its determinants:

λ0(t, x̃j , γ) = λ0(t, θj2) with: θj2 = x̃′
jγ.

Notice that some normalizations may be required, especially if θj1 and θj2 share covari-

ates.

Lastly, to ensure that the variance is positive when estimating, we parameterize it as:

σ2 = exp(θ3).

The log-linearity and single-index assumption are not only crucial for the interpretation

of the results, they also make the log-likelihood computations tremendously easier.

Usually, log-likelihood optimization routines namely require score functions and the

Fisher information matrix. This Jacobian and Hessian of the log-likelihood function can

be numerically approximated or analytically computed, where numerical approximations

are notoriously slow and inefficient if extensive data sets are used. In turn, if these

derivatives can be calculated analytically we can save much computational time and

have better estimation accuracy. The linear form restrictions allow us to calculate the

derivatives in a straightforward way analytically. We can just do scalar differentiation

for θj1(t), θj2, and θ3, and subsequently apply the chain rule of optimization to reach

at the Jacobian and Hessian analyzed in β, γ, and σ2. STATA has further optimized

the implementation of the chain rule via the built-in routines mlvecsum, mlmatsum and

mlmatbysum (Gould et al., 2010), which we therefore also apply.
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Time-varying Covariates

Based on the above parameterizations, we may program the log-likelihood contributions.

The first three terms in (5.3) are a scalar sum, which we can therefore easily compute.

The last two terms are more complex because they involve hazard M , integrated over

the entire covariate path. We have to convert this integral into a computable quantity.

For tractability, we split up the integral function M into distinct Sj domains t ∈

{t
(s−1)
j , t

(s)
j } on which the covariate vector xj(t) is constant (comparable to piecewise

constant specifications for λ0 as a function of t). In such a domain, the time-invariant

impact ϕ leaves the integral and we only integrate over λ0, which is a simple integral

problem:

M(tj , Xj , x̃j) =
∫ tj

0
ϕ(xj(τ)) · λ0(τ, x̃j)dτ

=
Sj∑

s=1

∫ t
(s)
j

t
(s−1)
j

ϕ (xj(τ)) · λ0(τ, x̃j)dτ

=
Sj∑

s=1

∫ t
(s)
j

t
(s−1)
j

ϕ
(

xj(t(s−1)
j )

)
· λ0(τ, x̃j)dτ

=
Sj∑

s=1
ϕ
(

xj(t(s−1)
j )

)
·
∫ t

(s)
j

t
(s−1)
j

λ0(τ, x̃j)dτ

=
Sj∑

s=1
ϕ
(

xj(t(s−1)
j )

)
·

(∫ t
(s)
j

0
λ0 (τ, x̃j) dτ −

∫ t
(s−1)
j

0
λ0 (τ, x̃j) dτ

)

=
Sj∑

s=1
M
(

t
(s)
j , xj(t(s−1)

j ), x̃j

)
− M

(
t
(s−1)
j , xj(t(s−1)

j ), x̃j

)
,

with: t
(0)
j = 0; t

(1)
j = t0j ; t

(Sj)
j = tj , and:

M(t0j , Xj , x̃j) =
∫ t0j

0
ϕ(xj(τ)) · λ0 (τ, x̃j) dτ =

∫ t(1)

0
ϕ
(

xj(t(0))
)

· λ0(τ, x̃j)dτ

= M
(

t(1), xj(t(0)), x̃j

)
,

since we assume covariates are fixed until the left truncation time t0j .
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Programmed Log-Likelihood

Combining the results above, we reach the following log-likelihood function that we

program in STATA using MATA, i.e. Method A:

lA (t, t0, X, x̃) =
(D−1)+∑

q=0

ln
(
qσ2 + 1

)
+

J∑
j=1

Dj · ln
(

ϕ
(

xj

(
t
(Sj −1)
j

)))

−
( 1

σ2 + D
)

· ln

(
σ2 ·

J∑
j=1

Sj∑
s=1

{
M
(

t
(s)
j , xj

(
t
(s−1)
j

)
, x̃j

)
− M

(
t
(s−1)
j , xj

(
t
(s−1)
j

)
, x̃j

)}
+ 1

)

+ 1
σ2 · ln

(
σ2 ·

J∑
j=1

M
(
t(1), xj

(
t(0)) , x̃j

)
+ 1

)
+

J∑
j=1

Dj · ln
(

λ0

(
t
(Sj)
j , x̃j

))
with: t

(0)
j = 0; t

(1)
j = t0j ; t

(Sj)
j = tj .

If we explicitly consider the parameters β and γ, we get :

Programmed Log-Likelihood Contribution for a Subject with J Spells and Shared Frailty:

lA (t, t0, X, x̃, β, γ) =
(D−1)+∑

q=0

ln (q · exp (θ3) + 1)

+
J∑

j=1

Dj · ln
(

ϕ
(

θj1

(
t
(Sj −1)
j

)))
+

J∑
j=1

Dj · ln
(

λ0

(
t
(Sj)
j , θj2

))
−
(

1
exp (θ3) + D

)
·

ln

(
exp (θ3) ·

J∑
j=1

Sj∑
s=1

{
M
(

t
(s)
j , θj1

(
t
(s−1)
j

)
, θj2

)
− M

(
t
(s−1)
j , θj1

(
t
(s−1)
j

)
, θj2

)}
+ 1

)

+ 1
exp (θ3) · ln

(
exp (θ3) ·

J∑
j=1

M
(
t(1), θj1

(
t(0)) , θj2

)
+ 1

)

with: t
(0)
j = 0; t

(1)
j = t0j ; t

(Sj)
j = tj , θj1 (t) = xj (t)′ β, θj2 = x̃′

jγ, and θ3 = ln
(
σ2) ,

which is the log-likelihood that we programmed in STATA and to which we can apply

the chain rule. Appendix E.2 provides the score function and Fisher information matrix

related to the programmed log-likelihood.

The estimation procedure is suitable to estimate the shared frailty model in the

presence of time-varying covariates, right censoring and left truncation. Furthermore,
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the time effect λ0 is allowed to depend on model covariates x̃. The estimation program

is available upon request.

5.2.5 Method B: Ignoring Dynamic Selection due to Left Trun-

cation

Method A differs from the STATA-build-in option to estimate shared frailty models with

left truncation: streg with the option shared(), which we will refer to as ‘Method B’.

This is simply because Method B is not intended or advised to be used in such settings.

As outlined in van den Berg and Drepper (2016), nevertheless applying this method

via input forceshared would impose that the observed frailty distribution of sampled

subjects is the same for untruncated and left-truncated subjects, i.e. G(ν). However,

to be in our sample, the left-truncated subjects must not have experienced any event

before t0. A relatively low frailty ν increases the likelihood of meeting thresholds t0.

Thus, left-truncated subjects are sampled from the distribution G(ν | T ≥ t0). Only if

the strong assumption of absence of unobserved heterogeneity is made, the distributions

G(ν | T ≥ t0) and G(ν) are identical under this truncation scheme. Otherwise the

distribution of ν in the left-truncated sample differs from that in the untruncated sample

and we have E(ν | T ≥ t0) < E(ν). This dependence is not taken into account if

Method B is incorrectly applied, and consequently duration dependence –a time effect–

is underestimated because it compensates for the omitted dynamic selection in the model.

Also, the magnitude of covariate impacts attenuates towards zero (van den Berg and

Drepper, 2016). The size of the bias increases with more severe left truncation.

To further elucidate the difference between the applicability of the two methods,

consider a simple example of a subject with multiple spells but no covariates. Assume

that all observed end times are right-censored, so conditional survival probabilities

enter the log-likelihood. The spells are left-truncated and meet truncation thresholds t0.

Method B takes the log-likelihood contribution of the subject as (Gutierrez, 2002):

lB(t, t0) =
∫ ∞

0
P(T ≥ t | ν, T ≥ t0) dG(ν)
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where the integral over unconditional frailty distribution G implies that the frailty

distribution is assumed to be independent from truncation times t0. However, in general

dynamic selection takes place and only subjects with favorable low ν reach truncated

start times t0. van den Berg and Drepper (2016) show that our log-likelihood (Method

A) is correct for the chosen truncation scheme and integrates over the conditional frailty

distribution instead:

lA(t, t0) =
∫ ∞

0
P(T ≥ t | ν, T ≥ t0) dG(ν | T ≥ t0)

Using Method B effectively means that conditioning correction in dG is left out, i.e. the

last term in (5.3). Method B only deals with left truncation by adapting the integrated

hazard on observed end times in (5.3) (the sum starts from s = 2 instead of from s = 1):

lB (t, t0, X, β, γ) =
(D−1)+∑

q=0

ln (q · exp (θ3) + 1) +
J∑

j=1

Dj · ln
(

ϕ
(

θj1

(
t
(Sj −1)
j

)))
+

J∑
j=1

Dj · ln
(

λ0

(
t
(Sj)
j , θj2

))
−
(

1
exp (θ3) + D

)
·

ln

(
exp (θ3) ·

J∑
j=1

Sj∑
s=2

{
M
(

t
(s)
j , θj1

(
t
(s−1)
j

)
, θj2

)
− M

(
t
(s−1)
j , θj1

(
t
(s−1)
j

)
, θj2

)}
+ 1

)
,

with: t
(0)
j = 0; t

(1)
j = t0j ; t

(Sj)
j = tj , θj1 (t) = xj (t)′ β, θj2 = γ, and θ3 = ln

(
σ2) .

In addition to coping with dynamic selection due to left truncation, note that our

Method A is more flexible by allowing observed covariates x̃ and duration dependence

γ to interact, i.e. θj2 = x̃′
jγ, whereas Method B does not: θj2 = γ. For Method B, we

have an alternative user-written version allowing θj2 = x̃′
jγ.

lA and lB are asymptotically the same (i.e. when sufficiently many subjects are sampled)

if the starting times t0 approach zero in the observed population. Then, we do not need

the corrective probability in our log-likelihood (5.3) for survival up to t0 because this

approaches unit value for each sampled subject (see Appendix E.3 for the proof). This

not only nests the special case of no left truncation t
(0)
j = 0, but also left truncation
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schemes imposing that only spells with very low t
(0)
j → 0 are sampled, e.g. when there

are many spells and all must meet the threshold. The subject’s sampling likelihood is

namely higher if the drawn t
(0)
j ’s are smaller. Lastly, lA and lB are asymptotically the

same if there is no frailty, i.e. when σ2 = 0.

Closely following van den Berg and Drepper (2016), we perform a Monte Carlo

experiment to compare the estimation outcomes of using Method A to using Method B

in settings with up to five spells of shared frailty and different degrees of left truncation.

We proceed in three steps. First, we generate data according to a mixed proportional

hazard rate with shared frailty and apply the truncation scheme. Next, to have a better

understanding of its implications for estimation outcomes, we discuss the simulated

observed frailty distribution G(ν | T ≥ t0) for different truncation rates and number of

shared spells. Lastly, we estimate hazard rate parameters on the simulated data and

compare outcomes across the estimation methods.

We consider a data generating process of random duration Tij according to a mixed

proportional hazard rate with shared frailty ν:

λ(tij | γ, β, νi, xij) = νi · λ0(tij | γ) · exp(βxij), with: νi ∼ Γd

(
1
σ2 ,

1
σ2

)
,

where i ∈ {1, .., N} indicates the subject and j ∈ {1, .., J} the spell number of the

subject. For subject i we draw J random event times; we denote the random event

times and their realisations with the vectors Ti = (Ti1, .., TiJ ) and ti = (ti1, .., tiJ ). The

frailty term νi is shared across all J spells of the subject here. The parameters β, γ, σ2

are of interest, and we aim provide estimates β̂, γ̂, and σ̂2. The data is generated in

three steps.

Step 1: Set model parameters and draw characteristics. For every case we assume

β = γ = σ2 = 1. Subjects draw characteristic xij ∼ N (0, 1), which is independent across

their spells. Also, subjects draw frailty νi ∼ Γd (1, 1) which is shared across their spells.

To see the relation between the number of shared spells within a subject and the bias,

we one-by-one consider the case where frailty is shared across J = 1, 2, 3, 4 and 5 spells.
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Furthermore, we separately analyze the cases where baseline hazard λ0 is specified as

Weibull and Gompertz hazard.

Step 2: Simulate end times tij based on the parameter constellations of Step 1. To this

end, we draw value tij from the conditional survival distribution S(tij | νi, xij). For this,

consider the fundamental relationship:

P(Tij ≥ tij | νi, xij) = S(tij | νi, xij) = exp
(

−
∫ tij

0
λ(τ | γ, β, νi, xij)dτ

)
= exp

(
−νi · exp(βxij) ·

∫ tij

0
λ0(τ | γ)dτ

)
→ − 1

νi · exp(βxij) · ln(Sij) =
∫ tij

0
λ0(τ | γ))dτ.

We can simulate tij by drawing Sij ∼ U (0, 1), and subsequently solving the last equation

for tij . Solving the equation requires the inverse of
∫ tij

0 λ0(τ | γ)dτ reported in Table

5.1.

Step 3: Apply the left truncation scheme. We consider different truncation rates c

running from 0 to 0.95 with increments of 0.05. For each tij the subject independently

draws a truncation time t0ij ∼ U (b(c)), and t0i is the collection of the subject’s threshold

values. A subject is left-truncated and entirely dropped from the data if one of the

subject’s spells does not meet the threshold, i.e. tij ≤ t0ij for some j ∈ {1, .., J}. The

parameter b(c) is tuned so that it guarantees truncation rate c. For each truncation

rate we keep the number observed subjects constant at N = 5, 000, because otherwise

higher truncation rates mechanically lead to small sample sizes and lower accuracy. We

repeat this procedure 100 times, so for each truncation rate, number of shared spells,

and baseline hazard type, we generate 100 data sets containing 5,000 subjects.

Before estimating β̂, γ̂, σ̂2 from the simulated data, we highlight in Figure 5.1 the

observed threshold values t0ij and the properties of our observed frailty distribution

G(νi | ti ≥ t0i). Each graph plots the truncation rate against the median observed t0ij

and the expected observed frailty E(νi | ti ≥ t0i). Each line is the connection of twenty

scatters, with a separate scatter for each truncation rate. Each scatter represents the
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median estimate across the 100 simulated data sets.

Panels A and B show how the median value of t0ij in the observed population varies

with the truncation rate. Obviously, this median is zero at a truncation rate of zero,

because we assume no truncation and thus no thresholds. Given the number of shared

spells, a higher truncation rate implies a higher median threshold by construction.

Instead taking the truncation rate as given, we see that the median threshold is lower

if there are more shared spells; ceteris paribus, the subject also meets the additional

thresholds if these thresholds are lower. Taken together, we expect that Method A

and B produce more similar results if truncation rates are low or when there are more

shared spells (the log-likelihoods lA and lB are then becoming asymptotically equivalent

as t0ij → 0, see Section 5.2.5). When there are fewer spells or higher truncation rates

we expect the estimation output by the two estimation methods to be more dissimilar.

Panels C and D reflect how mean observed frailty, measuring the degree of dynamic

selection, varies with the truncation rate. To explain the patterns, we take the expected

frailty in the underlying population E(νi) = 1 as reference point. Indeed, at a truncation

rate of zero, i.e. no dynamic selection, we have that the observed mean E(νi | ti ≥ t0i) = 1

is the same as in the underlying population. However, E(νi | ti ≥ t0i) is lower at higher

truncation rates so when truncation is more severe. The dynamic selection becomes

stronger at higher truncation rates because a lower ν makes meeting the higher truncation

thresholds more likely. Focussing on differences at a given truncation rate, we see that

the dynamic selection is stronger if there are more shared spells: ceteris paribus, a lower

ν makes it more likely to also meet the thresholds for the additional shared spells.

We now turn to comparing estimation outcomes β̂, γ̂, and σ̂2 of using Method A, i.e.

allowing for dynamic selection due left truncation and unobserved heterogeneity, to using

Method B, i.e. not allowing for dynamic selection due left truncation and unobserved

heterogeneity. Additionally, we introduce Method C which restricts estimation to σ2 = 0

(the conventional STATA-command streg without the option shared()). The latter

estimation is used to see how severe the bias from using Method B is compared to
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conventional biases that arise if hazard models are misspecified with an excluded frailty

term. For the estimation, we assume that the researcher knows that the time-invariant

impact does not feature a constant and that the functional form of the baseline hazard

λ0 is correct. We provide the median parameter estimates across the 100 simulated data

sets in Figures 2 and 3. Each line is again a connection of twenty scatters. The second

column in Figure 3 is a replication of van den Berg and Drepper (2016).

We see that Method A reports the underlying parameter values for any truncation

rate, number of shared spells and baseline hazard. To this end, we had to compare the

estimated parameters values β̂, γ̂, and σ̂2 to their underlying true values: β̂ = γ̂ = σ̂2 = 1.

This is unsurprising as the used log-likelihood specification lA is tailored to the underlying

data generating process in this simulation. Only at the very high truncation rate of 0.95,

the parameter estimates deviate somewhat from the true parameter values.

We do see large deviations in β̂ and duration dependence γ̂ from their true values

when we apply Method B. Figure 2 reveals that if the truncation rate is 0.5 (i.e. we

leave out 50% of the subjects because one or more of their end times are below the

truncation threshold) then our implied estimates are β̂ = 0.46 and γ̂ = 0.53 for a

single-spell Weibull model. This suggests a substantial attenuation bias towards zero

of 54% ((1 − 0.46) × 100%) and 47% if we use Method B. We also see that the bias

increases if we have heavier truncation, reflected by a higher truncation rate. As pointed

out in Section 2.5, the attenuation bias increases with the truncation rate because we

observe a more selective sample of ν. The bias is comparable for the Gompertz case

(see Figure 3).

The bias in parameter estimates β̂ and γ̂ remains substantial and negative if we

consider shared frailty across more than one spell, but the size of the bias becomes

smaller. E.g. at a truncation rate of 50% and five shared spells, the attenuation bias for

β̂ and γ̂ with Weibull hazard declines from 54% and 47% for single spells to 2% and 3%

for five spells. The decline in bias is a direct result of that t0i → 0 (Figure 5.1) making

lB more similar to the unbiased method lA (see Section 5.2.5).



641784-L-bw-vdVaart641784-L-bw-vdVaart641784-L-bw-vdVaart641784-L-bw-vdVaart
Processed on: 13-5-2024Processed on: 13-5-2024Processed on: 13-5-2024Processed on: 13-5-2024 PDF page: 156PDF page: 156PDF page: 156PDF page: 156

142 Chapter 5. Estimating Left-truncated Shared Frailty Models

Contrary to the bias in β̂ and γ̂, the bias in σ̂2 can take different signs and explode

if we consider more spells and heavier truncation schemes. Even though t0i → 0, the

thresholds are still positive and frailty distribution highly selective; the estimate σ̂2 is

sensitive for the positive small thresholds in combination with the strong selection.

Even though we obtained seemingly unbiased estimates β̂ and γ̂ at many spells, we

consider the bias in σ̂2 undesirable because this is sometimes as well a parameter of

interest: take for example studies on mortality plateaus in old age where it is crucial to

distinguish between frailty and age effects (see e.g. Barbi et al., 2018).

To put the bias from Method B into perspective, we also provide the parameter

estimates that follow from erroneously specifying a hazard model without frailty, i.e.

Method C. In all cases, we see that the bias from a wrongly specified hazard rate is a

lower bound to the bias from applying Method B. Hence, with the current parameter

constellation and truncation scheme it is more useful to specify a model with frailty.

5.3 Discussion and Conclusion

We developed a general estimation procedure to estimate shared frailty models with left

truncation. Using a Monte Carlo experiment, we find that duration and covariate effects

are downwards biased. At the same time, the frailty variance can be underestimated or

overestimated if the interplay between left truncation and shared frailty is ignored. Our

procedure resolves all biases, but the biases in time effects and covariate impacts also

nullify if entry thresholds are equal to zero, a truncation rate is low, or the number of

spells within a subject increases. Our estimation procedure is more versatile than other

approaches because we can simultaneously allow for left truncation, right censoring,

time-varying covariates, and an arbitrary amount of shared spells.

Caution remains warranted when interpreting our Monte Carlo experiment results

because the biases strongly depend on our chosen truncation scheme and parameter

values. We consider the natural extension of a left-truncated single spell per subject,

i.e., all spells within a subject must meet a threshold in order to be in our sample. For

instance, sampling families only if all members are alive on a particular date. Alternative
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schemes could involve repeated spells within a subject, where the subject is sampled

only if its first spell meets a threshold. The size of the biases and the signs, particularly

frailty variance, may differ under the different truncation schemes.

Our estimation procedure distinguishes from earlier programmed work in R and

STATA particularly by that we simultaneously allow for time-varying covariates and

left truncation (van den Berg and Drepper, 2016; Balan and Putter, 2019; Gorfine

and Zucker, 2023). In the Monte Carlo experiment, we, however, only included time-

invariant covariates for expository purposes. The direction of time-varying covariates

and left truncation is an interesting avenue for future research for this Monte Carlo

experiment and parameter identification. In this chapter, we have to assume that

covariates are constant until the left truncation point; we encourage new work to

find milder assumptions that yield parameter identification in a shared frailty model

with time-varying covariates and left truncation (Lancaster, 1990; Honoré, 1993). Our

programs can support a Monte Carlo experiment on such identification as well.

Researchers should be aware of the implications of ignoring dynamic selection due to

left truncation. Even more so, because the STATA package streg, shared() assumes

no dynamic selection due to left truncation, and several studies applied this estimation

technique (for examples, see: van den Berg and Drepper, 2016). The good news of our

research is that there are settings where dynamic selection due to left truncation is

present but can be ignored to have unbiased estimates, in particular studies with many

spells or low truncation rates.
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Figure 5.1: Observed Left Truncation Thresholds and Observed Frailty by Left Trunca-
tion rate

Weibull: median(t0ij | ti ≥ t0i)
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Notes: Each line is the connection of twenty scatter points, each for a truncation rate
between 0 to 0.95 (increments of 0.05). Each scatter is the median across 100 simulated data
sets.
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Appendix B: Chapter 2
B.1 Data

Table B.1: Variables Not Reported in Table 2.1

Variables: Categorical values:

Woman 1: Yes; 0: No.

Prescribed medication for: 1: High blood cholesterol; 2: High blood pressure;
(cf. Van Ooijen et al., 2015) 3: Coronary and peripheral vascular disease;

4: Cardiac diseases 5: Respiratory illness, asthma;
6: Diabetes; 7: Rheumatic Disease; 8: Gout;
9: Osteoporosis; 10: Peptic acid; 11: Cancer;
12: Cataract or glaucoma; 13: Epilepsy;
14: Thyroid disorder; 15: Pain; 16: Alzheimer;
17: Parkinson; 18: Sleep problems;
19: Depression; 20: Anxiety; 21: Psychotic illness;
22: Other: non-chronic

Ethnicity 1: Indigenous; 2: Moroccan;
3: Turkish; 4: Surinam;
5: Former Dutch Antilles incl. Aruba;
6: Other non-Western countries;
7: Other Western countries; 8: Unknown

Region of residence: 1: Amstelland en de Meerland; 2: Amsterdam;
(31 Regions with their own LTC 3: Apeldoorn/Zuthpen; 4: Arnhem; 5: Drenthe;
procurement office that matches 6: Flevoland; 7: Friesland; 8: Groningen;
LTC supply and demand 9: Haaglanden; 10: Kennemerland;
for the regional population) 11: Midden-Brabant; 12: Midden-Holland;

13: Midden-IJssel; 14: Nijmegen;
15: Noord- en Midden-Limburg;
16: Noord-Holland-Noord; 17: Noordoost-Brabant;
18: Rotterdam; 19: ’t Gooi 20: Twente;
21: Utrecht; 22: Waardenland; 23: West-Brabant;
24: Westland; 25: Zaanstreek/Waterland;
26: Zeeland; 27: Zuid-Holland-Noord;
28: Zuid-Hollandse Eilanden; 29: Zuid-Limburg;
30: Zuidoost-Brabant; 31: Zwolle
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B.2 LTC Assessment

B.2.1 Description of LTC Services

• Personal care: involves (simple) medication uptake and help with activities of

daily living (ADLs), including bathing, dressing, ambulating, toileting (including

continence), feeding;

• Nursing care: more specialized care such as needle injection and catheterization;

• Treatment: aims at rehabilitation or prevents worsening of the limitation (we

consider this to be nursing care);

• Social support includes daycare in groups or personal assistance, e.g., help with

organizing the household and doing administration (Mot, 2010).

B.2.2 Entitlement to Home-based Care Services

The entitlements are in hours per week per LTC service. The classification is as follows:

• Personal care: 0-1.9 hours; 2-3.9 hours; 4-6.9 hours; 7-9.9 hours; 10-12.9 hours;

13-15.9 hours; 16-19.9 hours; 20-24.9 hours; 25 hours or more;

• Nursing care: 0-1.9 hours; 2-3.9 hours; 4-6.9 hours; 7-9.9 hours; 10-12.9 hours;

13-15.9 hours; 16-19.9 hours; 20-24.9 hours; 25 hours or more;

• Treatment (individual): no hours allocation;

• Treatment (group): 1 day part, 2 day parts; 3 day parts; 4 day parts; 5 day

parts; 6 day parts; 7 day parts; 8 day parts; 9 day parts. A day part is 4 hours;

• Social support (individual) 0-1.9 hours; 2-3.9 hours; 4-6.9 hours; 7-9.9 hours;

10-12.9 hours; 13-15.9 hours; 16-19.9 hours; 20-24.9 hours; 25 hours or more;

• Social support (group) 1 day part, 2 day parts; 3 day parts; 4 day parts; 5 day

parts; 6 day parts; 7 day parts; 8 day parts; 9 day parts. A day part is 4 hours.
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B.3 Descriptive Statistics

Table B.5: Observed Characteristics by Used LTC Arrangement (all)

No LTC use Home-based Institutional
care care

Woman = 1 0.54 0.71 0.73
Partner = 1 0.68 0.30 0.19
Partner uses same arrangement = 1∗ 0.97 0.29 0.44
Has children = 1 0.87 0.84 0.76

Median equivalized household income∗∗ 22.9 19.6 17.8
Median household financial assets∗∗ 30.6 23.2 23.2
Homeowner = 1 0.56 0.30 0.16
Age 73.3 82.1 84.1

Main health problem:
Has physical impairment = 1∗∗ 0.80 0.51
Has cognitive impairment = 1 0.09 0.36
Has other problem = 1∗∗∗ 0.03 0.09
Has no entitlement = 1 0.08 0.04

Individuals (%): 13,598,785 (87) 1,115,609 (7) 963,410 (6)
∗ Conditional upon having a partner; ∗∗ 000se ∗∗∗ Physical impairment or disability; ∗∗∗∗ A
sensory disability, intellectual disability or mental disorder

Table B.6: Entitled Hours of Care by Used LTC Arrangement and Health Problem (all)

Home-based care Institutional care
Impairment: Physical Cognitive Physical Cognitive
Hours of care per week:

0-2 17 6 2 4
2-4 23 11 0 0
4-7 25 16 9 0
7-10 16 12 17 0
10-13 8 6 22 1
13-16 4 21 13 16
16-20 3 25 22 67
20-25 3 2 12 12
25+ 2 0 5 0∑

100% 100% 100% 100%

Median 5.5 11.5 13.25 19.25
N 897,806 98,201 491,449 348,990
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158 Appendix B. Chapter 2
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B.6 Correlated Frailty and Competing Risks

Suppose that we are interested in two competing event times of somebody who is

currently alive without LTC: ‘start of LTC’ (S) and ‘Death’ (D). Our analysis stops

whichever event occurs first.

Actual event times are latent variables. Assume that α is the sole covariate that

determines both event times, and α is unobserved. We follow subjects till time t∗(α),

depending on whichever transition comes first. Suppose transition S would actually take

place at time t∗
S and transition D at time t∗

D. The observation scheme is:

t∗(α) =


t∗
D(α) if t∗

D(α) < t∗
S(α)

t∗
S(α) if t∗

D(α) ≥ t∗
S(α),

The survival probabilities that draw our interest, are:

SD(t∗(α)|α) = P(t > t∗(α) | t∗
D(α) < t∗

S(α), α)

SS(t∗(α)|α) = P(t > t∗(α) | t∗
D(α) ≥ t∗

S(α), α),

which are the duration distributions conditional upon that event D or S occurs first.

To estimate ŜD(t|α) we can naively apply survival function estimation with right

censoring. We would treat an observation ‘right-censored’ at time t∗(α) if t∗
D(α) ≥ t∗

S(α),

i.e., event S occurs first. The log-likelihood would be as follows:

L(t∗) = log
{

ŜD(t∗(α))
}

·1(t∗
D(α) ≥ t∗

S(α))+log

{
−∂ŜD(t∗(α))

∂t

}
·1(t∗

D(α) < t∗
S(α)).

(B.1)

Note that treating 1(t∗
D(α) ≥ t∗

S(α)) as random right censoring ignores its dependence

on α. Instead, the event time t∗(α) is correlated with the censoring mechanism. The

survival functions of t∗
D(α) and t∗

S(α) must be estimated jointly.
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168 Appendix B. Chapter 2

Shared Unobserved α over the Transitions

Suppose we assume a mixed proportional hazard specification for transition S and

transition D, no covariates, and exponential hazard for duration dependence. The

researcher knows the frailty distribution and will update the log-likelihood function

accordingly. The survival distributions (conditional upon α) are (van den Berg, 2001):

SD(t|α) = exp(−αλDt) = (exp(−λDt))α
SS(t | α) = exp(−αλSt) = (exp(−λSt))α

=
(

S̃D(t)
)α

=
(

S̃S(t)
)α

where λS and λS are scalar parameters that induce the exponential hazard. S̃D(t) and

S̃D(t) the survival probabilities when α = 1. The individual random effect α scales these

survival probabilities up or down, i.e., the impact of frailty on survival probabilities. The

last step holds for any baseline hazard, so that we can generalize the following results.

For log-likelihood estimation we are interested in the joint survival probability. The

conditional joint survival probabilities are:

S(t1, t2|α) =
(

S̃D(t1)
)α

·
(

S̃S(t2)
)α

The unconditional joint survival probabilities are:

S(t1, t2) =
∫

S(t1, t2|α)dG(α) =
∫ (

S̃D(t1)
)α

·
(

S̃S(t2)
)α

dG(α)

=
∫ (

S̃D(t1) · S̃S(t2)
)α

dG(α) (B.2)

where G is the distribution function of α. The joint log-likelihood function becomes:

L(t∗) = log

(
−∂S(t∗, t∗)

∂t1
· 1(t∗

D ≤ t∗
S)
)

+ log

(
−∂S(t∗, t∗)

∂t2

)
· 1(t∗

S < t∗
D)

Because of shared unobserved heterogeneity α in (B.2), this likelihood is not separable

in transition D and S. Hence, we cannot estimate the specification for S and D apart.
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B.6. Correlated Frailty and Competing Risks 169

Unobserved Term Independent across Transitions

Now, suppose that the unobserved term α determines D and the unobserved term β

determines S. α and β are independent. Denote F and H the respective distribution of

α and β. The joint survival probability is now separable in D and S:

S(t1, t2) =
∫ ∫

S(t1, t2|α, β)dF (α)dH(β)

=
∫ ∫ (

S̃D(t1)
)α

·
(

S̃S(t2)
)β

dF (α)dH(β)

=
∫ (

S̃D(t1)
)α

dF (α)
∫ (

S̃S(t2)
)β

dH(β)

= Eα

(
S̃D ((t1))α

)
· Eβ

(
S̃S ((t2))β

)
.

Also, the log-likelihood becomes separable in risks S and D:

L(t∗) = log

(
−∂S(t∗, t∗)

∂t1

)
· 1(t∗

D ≤ t∗
S) + log

(
−∂S(t∗, t∗)

∂t2

)
· 1(t∗

S < t∗
D)

= log

−∂Eα

((
S̃D (t∗)

)α)
Eβ

((
S̃S (t∗)

)β
)

∂t1

 · 1(t∗
D ≤ t∗

S)

+ log

−∂Eα

((
S̃D (t∗)

)α)
Eβ

((
S̃S (t∗)

)β
)

∂t2

 · 1(t∗
D > t∗

S)

= log

Eβ

((
S̃S (t∗)

)β
)

·
−∂Eα

((
S̃D (t∗)

)α)
∂t1

 · 1(t∗
D ≤ t∗

S)

+ log

Eα

((
S̃D (t∗)

)α)
·

−Eβ

((
S̃S (t∗)

)β
)

∂t2

 · 1(t∗
D > t∗

S)

= log
(
Eα

((
S̃D (t∗)

)α))
· 1(t∗

D > t∗
S) + log

−Eα

((
S̃D (t∗)

)α)
∂t1

 · 1(t∗
D ≤ t∗

S)

+ log

(
Eβ

((
S̃S (t∗)

)β
))

· 1(t∗
D ≤ t∗

S) + log

−∂Eβ

((
S̃S (t∗)

)β
)

∂t2

 · 1(t∗
D > t∗

S)



641784-L-bw-vdVaart641784-L-bw-vdVaart641784-L-bw-vdVaart641784-L-bw-vdVaart
Processed on: 13-5-2024Processed on: 13-5-2024Processed on: 13-5-2024Processed on: 13-5-2024 PDF page: 184PDF page: 184PDF page: 184PDF page: 184

170 Appendix B. Chapter 2

The first two terms define the log-likelihood contribution due to risk D, similar to

equations (2.7) and (B.1). In this particular case, we may treat the occurrence of the

other event as random censoring and estimate the specifications for S and D separately.

Parameter Identification of the Mixed Proportional Hazard Model

While we refer to Chapter 5 for the details on the full likelihood estimation, we can here

provide heuristic arguments for parameter identification (for an overview, see: van den

Berg, 2001). For identification, we resort to variation in hazard and unconditional

transition probabilities between individuals and within individuals. First, we observe

multiple spells for some individuals, e.g., repeated home-based care use. At time t, ν and

ϕij(t) are the same for both spells, but x(t) can vary across spells. Then hazard rates

differ solely due to x(t)′βij , and the comparison reveals βij . Instead, if x(t) is constant

across spells, the repeated event helps identifying ϕij(t). Namely, the only difference

between their unconditional transition probabilities stems from the hazard component

ϕij(t). Second, we have time-varying covariates. Suppose we have two groups, one

with x(t) = x at any time and another with x(t) = x for t < t∗ and x(t) = x̃ ̸= x for

t ≥ t∗ > 0. Then, a difference in their unconditional transition probabilities can be

fully attributed to the break in x(t) which, in turn, identifies βij . Lastly, x(t) varies

between individuals. βij is identified with a similar reasoning as repeated spells but

now by comparing distinct individuals under more stringent assumptions (Elbers and

Ridder, 1982). Our choice for the Gamma distribution ensures the stricter assumptions

are met and guarantees identification of σ2
ij .
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Appendix C: Chapter 3
C.1 Constructing a Measure for Lifetime Income

To compute a measure for lifetime income for the households, we follow Knoef et al.

(2016). Their approach allows us to include annuity value of household’s financial assets.

Some households have low income but many assets, e.g., former entrepreneurs, making

it indispensable to include the annuity income from financial assets in a lifetime income

definition. We measure lifetime income as the average income during retirement plus

the annuity value of financial assets.

We use the population tax files on income (2003-2014) and assets (2006-2014). Assets

comprise the sum of savings and stock and bond holdings, but exclude home ownership

because this is strongly correlated with not being in a nursing home (read: long-

term care). Income is measured at the household level, including labor and business

income, retirement income (social security benefits, employer-based, and private pension

arrangements), social insurance benefits, taxes, and social insurance contributions.

Income predominantly consists of retirement income, because we restrict households to

have this as their main source of income.

Yet, we do not observe the annuity value of assets, B, which we will therefore impute.

We assume that a household bought an annuity when the oldest member was 65. If

available, the other member might be younger than 65. The price of the annuity equals

the household’s current assets A.1 The annuity yearly pays B if it is a single-person

household and
√

2 ·B if it is a couple household.
√

2 is an equivalence scale (OECD, 2011)

that the OECD applies when comparing income between single and couple households.

The product is actuarially fair: the benefit level B is set such that the expected lifetime
1We implicitly assume that households do not save or dis-save after retirement.
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benefits and current assets A are equal. Hence the benefit level B is household-specific.

Expected lifetime benefits look as follows:

E(Benefit(B)) =



∑99
n=0

1
(1+r)n (B · nsm) if Single man at age 65∑99

n=0
1

(1+r)n (B · nsw) if Single woman at age 65∑99
n=0

1
(1+r)n

(
B · nsm · (1 − nsw) + B · nsw · (1 − nsm)

+
√

2 · B · nsm · nsw

)
if Married couple at age 65,

where n refers to the years since the oldest household member turned 65. nsm and nsw

are the probabilities that the man or woman in the household survives n years after

buying the annuity. 1 − nsm and 1 − nsw are the probabilities that the man or woman

died within n years after buying the annuity. The probabilities are gender-, cohort-, and

age-specific, and taken from the life tables of Statistics Netherlands.2 These probabilities

are age-specific because couple members might have a different age when the household

buys the annuity.

The expected benefits E(Benefit(B)) are the sum of benefits expected in each period.

We assume a maximum benefit payout period of 99 years, the length of the life tables.

Benefits are deflated using an assumed yearly interest rate r = 0.02. Focusing on the

case of a single man at age 65, the expected benefit in period n is the product of the

household-specific benefit and the probability of being this household type in period n,

nsw. Likewise for a single woman. The case for couples is more complex. Households

are a single man with probability nsm · (1 − nsw), i.e. the man survived until period

n while the woman has died. Benefits are scaled up by
√

2 in case of couples, which

happens with probability nsm · nsw, i.e. the man and woman both survive. Survival is

assumed to be independent across household members.

The annuity benefit, i.e. annuity value of assets, is found by solving A = E(Benefit(B))

for B. Because assets vary each year in the data, the benefit B is time-varying within a
2See: https://opendata.cbs.nl/statline/#/CBS/nl/dataset/37360ned/table?fromstatweb [Re-

trieved on: February 18th 2022]

https://opendata.cbs.nl/statline/#/CBS/nl/dataset/37360ned/table?fromstatweb
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household.

Household’s lifetime income is the average sum of household income and the imputed

annuity value of assets. However, the size of the household might change during these

years, and differs across households. Then, married couples by definition would have

high lifetime income. To tackle this problem, we equivalize household’s income with

equivalence scale
√

2 so to make couples and singles comparable in terms of their income

(cf. Attanasio and Emmerson, 2003). Formally, we calculate lifetime income PIi of

household i as follows:

PIi =
∑Ni

τ=1 Biτ + yiτ√
2 · marstatiτ + yiτ · (1 − marstatiτ )

Ni
,

where yiτ is household income in year τ , Biτ annuity value of assets, Ni the number of

panel observations of household i and marstatiτ an indicator on whether the household

is a couple or single person.

C.2 Simulation Procedure

C.2.1 Log-Likelihood Estimation of the Hazard Rates

Suppose we want to estimate the unknown parameters γk, βk, and σk of the hazard rate

λk(t, marstat(t); νk, γk, βk), specified in (3.8). We will apply a log-likelihood estimation

procedure to estimate the parameters of transition k. We will derive the probability

distribution that is input for the individual log-likelihood contribution (we drop index

i). To further save on notation, we drop γk and βk; our examples refer to an individual

with a given initial marital status, lifetime income group and gender.

Before we derive the probability distribution of interest, we have to discuss the

implications of our competing risk setting. Essentially, two transitions are possible at

any age, and one will preclude the other from actually occurring. For example, No

Long-term Care use → Death happens at random age TD = t∗ while No Long-term

Care use → Long-term Care use would happen at random age TL = t∗∗ > t∗. We

want to estimate the distribution (transition rate) of both TL and TD. Note that the
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researcher knows TL ≥ t∗ but TL = t∗∗ > t∗ is hidden information. The competing

risks require a log-likelihood function involving the joint distribution of the observed

event: P(TD = t∗, TL ≥ t∗ | νL, νD). This distribution simplifies because we assume

random effects to be independent across transitions, i.e., νD ⊥ νL: P(TD = t∗, TL ≥

t∗ | νL, νD) = P(TD = t∗ | νD) · P(TL ≥ t∗ | νL). Like the distribution function, the

likelihood function will split into two sub-likelihoods and we can estimate the transition

rates with separate regressions, each for a transition k. The event time TL would be

modelled as randomly right-censored at t∗ (P(TL ≥ t∗| νL)).

To explain the estimation of a single transition, we look at an example of an individual

with two spells of type k. The first spell starts at age t0,1 > 0, implying a left-truncated

observation, for example, because the individual is older than 65 when entering the sample.

The other spell starts at age t0,2 > t0,1 > 0. The spells end at ages t0,1 < t1 < t0,2 and

t2 > t0,2, meaning the first spell ends before the next spell starts. The log-likelihood is

based on the joint survival probability of staying in the state until ages t1 and t2, given

you entered the state at ages t0,1 and t0,2. As we will show below, the hazard rate (3.8)

fully characterizes the distribution T , the random age at transition.

Besides left truncation, our estimation also considers that marital status is a time-

varying covariate. In the example, we assume that the individual is married during spell

1, i.e. marstat(t) = 1 if t ≤ t1. The individual becomes widowed during spell 2 at age

tw: t0,2 < tw < t2, so marstat(t) = 1 if t < tw < t2 and marstat(t) = 0 if t > tw.

The first ingredient to construct the log-likelihood is to have the integrated hazard

rate mk, i.e. the transition rate on having made a transition between age 0 and t:

mk(t; νk, marstat = x) =
∫ t

0
λk(τ, marstat = x; νk, γk, βk)dτ

= νk ·
∫ t

0
λk(τ, marstat = x; νk = 1, γk, βk)dτ

= νk · mk(t; νk = 1, marstat = x), (C.1)

where we can go from step 1 to steps 2 and 3 because the hazard rate is proportional
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in νk. The alternative representations using λk(τ, marstat = x; νk = 1, γk, βk) and

mk(t; νk = 1, marstat = x) have a closed-form solution (see: Bender et al., 2005) and

make it easier to derive a closed-form solution for the log-likelihood contribution.

The marital status in (C.1) is assumed to have the fixed value x = {0, 1} between

age 0 and t, i.e. marital status is time-invariant. The accumulated hazards mk at the

left-truncation points t = t0,1 and t = t0,2 and end age t = t1 are defined according to

(C.1) because marital status only changes after these ages: tw > t0,2. The definition

of accumulated hazard at age t2, however, differs because marital status changes at

tw < t2:

mk(t2; νk, {marstat(s)}t2
s=t0,2

) = mk(tw; νk, marstat = 1)

+ mk(t2; νk, marstat = 0) − mk(tw; νk, marstat = 0)

where {marstat(s)}t2
s=t0,2

denotes the covariate path of marital status between age

t0,2 and t2. The accumulated hazard consists of the sum of hazard until tw when

married (marstat = 1) plus the hazard accumulated between tw and t2 when single

(marstat = 0).

The joint survival probability of not having made the transition until ages t1 and t2

is linked to the integrated hazard rates is:

Pk(T1 > t1, T2 > t2 | {marstat(s)}t2
s=0, νk)

= exp
(

−
{

mk(t1; νk, marstat = 1) + mk(t2; νk, {marstat(s)}t2
s=t0,2

)
})

,

which is the exponential function where the negative sum of accumulated hazards serves

as input (see: Bender et al., 2005).

For the left truncation points, we can do the same, i.e. the survival probability of not
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having made the transition by ages t0,1 and t0,2:

Pk(T1 > t0,1, T2 > t0,2 | νk, {marstat(s)}t0,2
s=0)

= exp
(
−
{

mk

(
t0,1; νk, marstat = 1

)
+ mk

(
t0,2; νk, marstat = 1

)})
.

The log-likelihood contribution is based on the joint survival probability of staying in

the state until ages t1 and t2, given you entered the state at ages t0,1 and t0,2:

Pk(T1 > t1, T2 > t2 | T1 > t0,1, T2 > t0,2, ·, νk) = Pk(T1 > t1, T2 > t2 | ·, νk)
Pk(T1 > t0,1, T2 > t0,2 | ·, νk) ,

where for notational convenience we replace the marital histories by a dot ·.

Lastly, we back out the random effect νk, which we do by integrating over its distribu-

tion:

Pk(T1 > t1, T2 > t2 | T1 > t0,1, T2 > t0,2, ·) (C.2)

=
∫ ∞

0

Pk(T1 > t1, T2 > t2 | νk, ·)
Pk(T1 > t0,1, T2 > t0,2 | νk, ·) dΓ(νk | T1 > t0,1, T2 > t0,2, ·)

=
∫∞

0 Pk(T1 > t1, T2 > t2 | νk, ·) dΓ(νk)∫∞
0 Pk(T1 > t0,1, T2 > t0,2 | νk, ·) dΓ(νk)

=

(
σ2

k ·
{

mk(t1; νk = 1, marstat = 1) + mk(t2; νk = 1, {marstat(s)}t2
s=t0,2

)
}

+ 1
)− 1

σ2
k

{σ2
k · (mk(t0,1; νk = 1, marstat = 1) + mk(t0,2; νk = 1, marstat = 1)) + 1}

− 1
σ2

k

,

where the final closed-form expression is the probability distribution we use to construct

the individual log-likelihood contribution (for the derivation, see Chapter 5). The first

step – where we integrate over the conditional distribution of the random effect– reflects

dynamic selection. Only a particular share of the initial population survives until these

dates, presumably driven by their favorable random effect. Hence, the left-truncated

distribution deviates from the initial distribution Γ(νk). The second step uses the initial

distribution instead, see van den Berg and Drepper (2016) for the justification. The last

step arrives at the closed-form solution because mk analyzed at νk = 1 has a closed-form
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solution itself (see Bender et al., 2005, for the solution of mk for the Gompertz case).

Note that the current case involves right censoring. We here provided the cumulative

probability of staying in a state until a particular age. This refers to the case when we

stop observing the individual at ages t1 and t2 while the actual transition is not yet

made, e.g. due to the end of the observational window or realization of a competing

risk (right censoring). Instead, the log-likelihood contribution involves a probability

density if the individual actually makes the transition. This is done by taking the

derivative of the probability distribution (C.2) with respect to random variable T1

or T2 and subsequently multiplying the derivative by −1 (to accommodate that we

want a cumulative distribution function, i.e. <, instead of a survival function, i.e. ≥

probabilities). Chapter 5 provides the log-likelihood contribution for a general case of n

spells of an individual.

A final remark involves the value of the log-likelihood function. The survival probability

(C.2) involves only transition k but not its competing risk, hence the accompanying log-

likelihood is a sub-log-likelihood, particular for transition k. If we add the log-likelihood

for the competing risk to this, we obtain the overall likelihood that we effectively

maximize. As said, the two sub-log-likelihoods can be optimized separately because the

unobservable (random) effect is assumed to be uncorrelated across transitions.

We refer to Honoré (1993) and van den Berg (2001) and the references therein for

parameter identification.

C.2.2 Simulation

We use estimated hazard specifications (3.8) and (C.1) to the simulate lifetime duration

of long-term care use and the timing of death for 100,000 households. Households

initially consist a couple of two members or a single member aged 65 years old. Denote

the age of entering the current state by t0, where t0 = 0 means entry at age 65. We are

interested in the subsequent state (not using long-term care, using long-term care, or

death) and at what random age T > t0 this transition occurs. We repeat looking for

the next state until every individual has died. Finally, we have for each individual a
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sequence of consecutive states and age at which these states start.

With slight abuse of notation, let the estimates for the integrated hazard rates (C.1)

be denoted by m̂k(t; νk = 1, marstat = x) = m̂k,x(t). m̂k,x(t) refers to an individual

with current marital status x who is endowed with a gender, initial marital status,

and lifetime income group. Hence, m̂k,x(t) can differ across individuals. For now we

assume x is fixed during life, i.e. we assume initially married individuals to be currently

married and assume that they stay married until they die (x = 1). Initial singles remain

unmarried throughout (x = 0). We introduce widowhood later.

Timing of transition k We use m̂k,x(t) to compute when a transition of type k, e.g.

No Long-term Care use → Death, would take place. To this end, we draw a transition

time from a conditional survival probability like (C.2): Given that the individual entered

the state at age T > t0, the transition k does not occur before age T > t > t0. This

gives:3

Pk(t | t0, x) = P(T > t | T > t0, x, k occurs) =

(
σ̂2

k · m̂k,x(t) + 1
)− 1

σ̂2
k(

σ̂2
k · m̂k,x(t0) + 1

)− 1

σ̂2
k

∼ U(0, 1)

Related to our case, Bender et al. (2005) provide the closed-form solution of m̂k,x(t)

when the baseline hazard is of Gompertz form.

The key to the simulation is that survival probability Pk(t | t0, x) is uniformly dis-

tributed itself. Suppose we randomly generate u ∈ U(0, 1) and let Pk(t | t0, x) = u. The

value t for which the equation holds, is a randomly generated age tk at which transition

k occurs:

tk = {m̂k,x}−1 (t), with: t = 1
σ̂2

k

·
{

u−σ̂2
k ·
{

σ̂2
k · m̂k,x (t0) + 1

}
− 1
}

.

3Alternatively, we endowed individuals with an individual-specific effect according to Γ̂k and
subsequently simulated their long-term care use and mortality. Our current approach fits age-specific
mortality rates and long-term care use rates better.
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Hence, we have a closed-form solution to simulate age tk when transition k would occur.

Our simulation considers that other transitions are possible, i.e. ‘Not using Long-term

Care → using Long-term Care’, that might preclude the transition ‘Not Using Long-term

Care → Death’ from occurring. We generate a random age tk for each possible transition.

The minimum across these ages defines the next state and the value for t0 with which

we continue the simulation. We end the simulation if the next state is death.

Widowhood So far we assumed that initially married individuals remain married

until death. However, one of the two couple members will die first, and the surviving

household member becomes single. Becoming single affects the hazard rate m̂k,x and

thereby thus the timing of a transition. While transition paths before widowhood remain

unchanged, we modify the simulated transitions for surviving partner after he or she

has become widowed. Remarriage after widowhood is not possible.

For this, we distinguish two types of transitions. First, we look at the transition

that is the first to occur after widowhood time tw. If the individual remained married,

the transition would take place at simulated age tk,orig. The individual’s accumulated

hazard is m̂k,x=1(tk,orig), which is a counterfactual. The true accumulated hazard is the

accumulated hazard until widowhood m̂k,x=1(tw) complemented with the hazard while

being single: m̂k,x=0(tk) − m̂k,x=0(tw). To incorporate a widowhood effect to tk, we set

the counterfactual and true hazard equal and solve for tk:

m̂k,x=1(tk,orig) = m̂k,x=1(tw) + m̂k,x=0(tk) − m̂k,x=0(tw) →

tk = {m̂k,x=0}−1(t), with: t = m̂k,x=1(tk,orig) − m̂k,x=1(tw) + m̂k,x=0(tw).

Like earlier, the minimum age across possible transitions determines the next state.

All spells that start after widowhood (t0 > tw) have a survivor probability as follows:

(σ̂2
k · {m̂k,x=1(tw) + m̂k,x=0(t) − m̂k,x=0(tw)} + 1)

− 1

σ̂2
k

(σ̂2
k · {m̂k,x=1(tw) + m̂k,x=0(t0) − m̂k,x=0(tw)} + 1)

− 1

σ̂2
k

∼ U(0, 1),
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and the simulated age at transition is:

tk = {m̂k,x=0}−1(t), with:

t = 1
σ̂2

k

· {u−σ̂2
k · {(σ̂2

k · {m̂k,x=0(t0) − m̂k,x=0(tw) + m̂k,x=1(tw)} + 1} − 1}

+ m̂k,x=0(tw) − m̂k,x=1(tw).

Initialization We endow households with initial marital status, long-term care use,

and lifetime income according to the empirical distribution of households when the

members are aged 65. Sample sizes are provided in Table C.1.

Table C.1: Initial Household Distribution in Simulation (N = 100, 000)

No LTC Man Woman Both All2 Share (%)
in LTC in LTC in LTC

All 96,193 1,716 2,047 44 100,000 100.0
Couple

Bottom Lifetime IQ 3,399 61 71 12 3,543 6.3
2nd Lifetime IQ 7,285 79 102 12 7,478 13.2
3rd Lifetime IQ 12,004 96 121 11 12,232 21.6
4th Lifetime IQ 15,046 92 99 6 15,243 27.0
Top Lifetime IQ 17,868 87 89 3 18,047 31.9

All 55,602 415 482 44 56,543 100.0
Single men

Bottom Lifetime IQ 2,324 435 2,759 17.4
2nd Lifetime IQ 1,731 327 2,058 13.0
3rd Lifetime IQ 2,505 260 2,765 17.5
4th Lifetime IQ 3,666 177 3,843 24.3
Top Lifetime IQ 4,297 102 4,399 27.8

All 14,523 1,301 15,824 100.0
Single women

Bottom Lifetime IQ 6,530 751 7,281 26.3
2nd Lifetime IQ 3,938 337 4,275 15.5
3rd Lifetime IQ 4,615 223 4,838 17.5
4th Lifetime IQ 5,542 162 5,704 20.6
Top Lifetime IQ 5,443 92 5,535 20.0

All 26,068 1,565 27,633 100.0
Notes: This table shows the sample distribution at age 65. Long-term care use is measured when the
household member is aged 65, also when there is an age difference between couple members. IQ = Income
Quintile. 1 The share of an income quintile is not exactly 20% because the lifetime income distribution
is determined by all households instead of only those who were aged 65 during the sampling period. 2

The total number of simulated households is 100,000, for which we provide the counts in this table. The
actual number of households in the data was higher.
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C.3 Demand Curves, WTPs, and Comparative Statics

First, we derive the incentive compatibility constraints, demand curves and willingness-

to-pay (WTP) for buying an annuity, LTC insurance, respectively. We have the utility

function:

V () = U(C1) + (s(ξ) − l(ξ))U(Ch
2 ) + l(ξ)U(Cl

2)

Let L = 1 if consumer buys a LTC insurance; 0 otherwise; A = 1 if consumer buys

annuity insurance, 0 otherwise. We assume no saving, so C1 = W1 − PAA − PLL;

Ch
2 = W2 + Y · A; Cl

2 = W2 + Y · A − X · (1 − L). Substitution of these equalities yields

the following direct utility function:

V (A, L; W1, W2, X, Y, PL, PA, ξ) = U(W1 − PAA − PLL)

+ (s(ξ) − l(ξ))U(W2 + Y · A)

+ l(ξ)U(W2 + Y · A − X · (1 − L))

A consumer buys LTC insurance if:

V (A∗, 1; W1, W2, X, Y, PL, PA, ξ) − V (A∗, 0; W1, W2, X, Y, PL, PA, ξ) ≥ 0,

i.e. the utility when insured exceeds that of being uninsured. Demand for LTC insurance

DL(PL|A∗, W1, W2, X, Y, PA) is the likelihood that this inequality holds:

DL(PL|·) = P
(

− (U(W1 − PAA∗) − U(W1 − PAA∗ − PL))

+ l(ξ)(U(W2 + Y A∗) − U(W2 + Y A∗ − X)) > 0
)

= P(ICL(A∗, W1, W2, X, Y, PL, PA, ξ) > 0), (C.3)
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where ICL is short-hand notation for the left hand side of the incentive compatibility con-

straint for LTC insurance. Notice that ICL (a utility difference) is strictly decreasing in

PL. Therefore, demand DL(PL|·) will be strictly decreasing in PL. We can meaningfully

define the WTP as follows:

πL(A∗, W1, W2, X, Y, PA, ξ) = max{PL; ICL(A∗, W1, W2, X, Y, PL, PA, ξ) ≤ 0)}

πL(·) can be solved from the following implicit equation:

ICL(A∗, W1, W2, X, Y, πL(·), PA, ξ) = 0

A consumer buys stand alone annuity insurance if V (1, L∗, W1, W2, X, Y, PL, PA, ξ) −

V (0, L∗, W1, W2, X, Y, PL, PA, ξ) ≥ 0. The demand curve is the probability that this

incentive compatibility constraint holds:

DA(PA|L∗, W1, W2, X, Y, PL) = P
(

− (U(W1 − PLL∗) − U(W1 − PA − PLL∗))

+ s(ξ)(U(W2 + Y ) − U(W2)) + (1 − L∗)l(ξ)LL(·) > 0
)

= P(ICA(L∗, W1, W2, X, Y, PL, PA, ξ) > 0) (C.4)

with LL(W2, Y, X) = ((U(W2 + Y − X) − U(W2 + Y )) − (U(W2 − X) − U(W2))). Since

U() is strictly concave and W2 > 0, Y > 0 and X > 0, LL(W2, Y, X) > 0.

Notice that ICA(·) in (C.4) (a utility difference) is strictly decreasing in PA. This

implies that the demand curve is also decreasing in PA. We can meaningfully define

WTP as follows:

πA(L∗, W1, W2, X, Y, PL, ξ) = max{PA; ICA(L∗, W1, W2, X, Y, PL, PA, ξ) ≤ 0}
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In other words, πA(·) can be solved from the following implicit equation:

ICA(L∗, W1, W2, X, Y, PL, πA(·), ξ) = 0

Lastly, consider the case of a life care annuity. Suppose that stand alone insurances

are not available. We assume no saving, so C1 = W1 − PCA · CA; Ch
2 = W2 + Y · CA;

Cl
2 = W2 +Y ·CA+ (ρ ·Y ·CA−X). Substitution of these equalities yields the following

direct utility function:

V (CA; W1, W2, ρ, Y, X, PCA) = U(W1 − PCACA) + (s(ξ) − l(ξ))U(W2 + Y · CA)

+ l(ξ)U(W2 + Y · CA + (ρY · CA − X))

A consumer buys a life care annuity if:

V (1; W1, W2, ρ, Y, X, PCA) − V (0; W1, W2, ρ, Y, X, PCA) ≥ 0. (C.5)

Then, demand for a life care annuity is given by the probability that this incentive

compatibility constraint is met:

DCA(PCA|W1, W2, ρ, Y, X) = P
(

− (U(W1) − U(W1 − PCA))

+ s(ξ)(U(W2 + Y ) − U(W2))

+ l(ξ)LLL(W2, ρ, Y, X) ≥ 0
)

= P(ICCA(W1, W2, ρ, Y, X, PCA, ξ) ≥ 0). (C.6)

where

LLL(W2, ρ, Y, X) = ((U(W2 + Y + (ρY − X)) − U(W2 + Y )) − (U(W2 − X) − U(W2)))

Since U() is strictly concave and W2 > 0, Y > 0 and X > 0, LLL(W2, ρ, Y, X) > 0.
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Notice that ICCA(·) in (C.6) (a utility difference) is strictly decreasing in PCA.

Moreover, DCA(PCA|·) is strictly decreasing in PCA. So, we can meaningfully define the

Willingness To Pay (WTP) as follows:

πCA(W1, W2, ρ, Y, X, ξ) = max{PCA; ICCA(W1, W2, ρ, Y, X, PCA, ξ) = 0}

In other words, πCA(·) can be solved from the following implicit equation:

ICCA(W1, W2, ρ, Y, X, πCA(·), ξ) = 0.

We now derive the comparative statics of the demand curve considering the premium

and correlation between risks l and s. The demand curves (C.3), (C.4), and (C.6) can

be written as the following implicit functions:

DL(PL|·) = P(l(ξ) · υ2,l,L(A∗, W2, Y, X) ≥ υ1,L(PL|W1, PA, A∗))

DA(PA|·) = P(l(ξ) · υ2,l,A(L∗, W2, Y, X) + s(ξ) · υ2,s,A(W2, Y ) ≥ υ1,A(PA|W1, PL, L∗))

DCA(PCA|·) = P(l(ξ) · υ2,l,CA(W2, ρ, Y, X) + s(ξ) · υ2,s,CA(W2, Y ) ≥ υ1,CA(PCA|W1)).

Note that these demand curves are of the form P(l · υ2,l + s · υ2,s ≥ υ1) where (s, l) are

potentially correlated risks and υ2,l > 0, υ2,s > 0 and υ1 ≥ 0 are scalars determining

demand. υ2,l and υ2,s are the utility gains from insurance coverage in period 2 of risks l

and s, respectively. υ1 is the utility loss in period 1 due to paying a premium for the

insurance. Obviously, the larger the insurance utility gains υ2,l > 0 and υ2,s are, the

more likely a consumer will buy insurance. Also, the lower the premium, the smaller

the utility loss υ1 is, and hence the more likely the demand for an insurance product is.

Formally:

∂DK(PK |·)
∂PK

=

>0︷ ︸︸ ︷
P(·)

∂υ1,K
·

<0︷ ︸︸ ︷
∂υ1,K

∂PK
< 0
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which means that demand is lower if the premium is higher (K ∈ (L, A, CA)).

Next, we ask ourselves: does a demand curve of the form D(P ) = P(l · υ2,l + s · υ2,s ≥

υ1(P )) becomes steeper or flatter if we decrease the correlation θ between risks l and s?

Put concretely, we are interested in the comparative statics:

∂2DL(PL; θ)
∂PL∂θ

; ∂2DA(PA; θ)
∂PA∂θ

; ∂2DCA(PCA; θ)
∂PCA∂θ

.

To this end, we have to explicitly derive the demand curve D(P |θ) = P(l · υ2,l + s · υ2,s ≥

υ1|θ) as a function of correlation θ, because that parameter is missing in the current

demand function. This requires knowledge of the joint distribution of s and l and its

dependence on correlation θ. Also, fixing everything else for our comparative static

means that we want to fix the marginal distributions in the population of l and s, and

only vary the part of the joint distribution that involves the correlation structure. Define

Γ(Fl, Fs) to be the set of joint distribution functions with marginals Fl = P(l ≤ L) and

Fs = P(s ≤ S). Following Solomon (2022) the correlation structure of interest is:

Definition of a correlation order Suppose we have two populations X, Y ∈ Γ(Fl, Fs)

and have joint CDFs FX , FY , respectively. Solomon (2022) defines the correlation

between l and s in population X is less correlated than in population Y or that X precedes

Y in correlation order, written as X ≾ Y if and only if:

P(s ≤ S, l ≤ L|X) = FX(S, L) ≤ FY (S, L) = P(s ≤ S, l ≤ L|Y ) for all (S, L) ∈ DF ,

so the probability of a pair with low (s, l) is smaller in population X than in Y , implying

the correlation is more negative in population X.

Ideally we have the same marginal distribution in Fl and Fs and modify the joint

relationship between the two variables only via a correlation parameter. A class of

distribution functions that meet these needs including a correlation order, are those of
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Farlie-Gumble-Morgenstern form (Denuit and Scaillet, 2004; Solomon, 2022):

F (S, L) = Fl(L) · Fs(S) · (1 + θ · (1 − Fl(L)) · (1 − Fs(S))) (C.7)

with θ ∈ [−1, 1] governing the dependence between the two marginals and θ = 0 implying

independent distributions for s and l.

For simplicity, and following Solomon (2022), we assume l ∼ U(0, 1) and s ∼ U(0, 1)

so Fl(L) = L and Fs(S) = S. Then:

F (S, L) = L · S · (1 + θ · (1 − L) · (1 − S)) =⇒ f(S, L) = 1 + θ · (1 − 2L) · (1 − 2S)

To find the demand functions, we require the convolution: P(l · υ2,l + s · υ2,s ≥ υ1 | θ) =

1 −P(l · υ2,l + s · υ2,s ≤ υ1 | θ). The closed-form solutions P(l · υ2,l + s · υ2,s ≤ υ1 | θ), are:

υ2
1

2υ2,lυ2,s
+ θ · 1

6 · υ2
1

υ4
2,s

· (υ2
1 − 2(υ2,l + υ2,s) · υ1 + 3υ2,lυ2,s), if υ1(P ) ≤ min(υ2,l, υ2,s)

υ1
υ2,s

− υ2,l

2·υ2,s
+ θ · 1

6 · υ2,l

υ2,s
·
(

1 − 2 ·
(

υ1−υ2,l

υ2,s

)
− υ2,l

υ2,s

)
, if υ1(P ) ∈ [υ2,l, υ2,s]

υ1
υ2,l

− υ2,s

2·υ2,l
+ θ · 1

6 · υ2,s

υ2,l
·
(

1 − 2 ·
(

υ1−υ2,s

υ2,l

)
− υ2,s

υ2,l

)
, if υ1(P ) ∈ [υ2,s, υ2,l]

1 − υ2,l+ 1
2 υ2,s−υ1
υ2,l

− 1
2 · (υ1−υ2,l)2

υ2,lυ2,s
− θ · 1

6 · υ2,s

υ2,l
·(

υ1−υ2,s

υ2,l
+ υ1−υ2,l

υ2,l
− 3 ·

(
υ1−υ2,l

υ2,s

)2
)

− θ · 1
6 ·

υ2,s

υ2,l
·

(
2 ·
(

1 − υ2,s

υ2,l

)
·
(

υ1−υ2,l

υ2,s

)3
+ υ2,s

υ2,l
·

(
υ1−υ2,l

υ2,s

)4)
, if υ1(P ) ≥ max(υ2,l, υ2,s),

which depends on the premium level (P) via υ1(P ), with υ′
1(P ) > 0.

We are interested in the sign of the comparative static:

∂2P(l · υ2,l + s · υ2,s ≥ υ1(P ) | θ)
∂P∂θ

= υ′
1(P ) · −∂2P(l · υ2,l + s · υ2,s ≤ υ1 | θ)

∂υ1∂θ
.



641784-L-bw-vdVaart641784-L-bw-vdVaart641784-L-bw-vdVaart641784-L-bw-vdVaart
Processed on: 13-5-2024Processed on: 13-5-2024Processed on: 13-5-2024Processed on: 13-5-2024 PDF page: 201PDF page: 201PDF page: 201PDF page: 201

C.3. Demand Curves, WTPs, and Comparative Statics 187

The relevant part of the comparative static is − ∂2P(l·υ2,l+s·υ2,s≤υ1 | θ)
∂υ1∂θ , given by:

−1
6 · υ1

υ4
2,s

· (4υ2
1 − 6(υ2,l + υ2,s) · υ1 + 6υ2,lυ2,s), if υ1(P ) ≤ min(υ2,l, υ2,s)

1
6 · υ2,l

υ2,s
· 2

υ2,s
, if υ1(P ) ∈ [υ2,l, υ2,s]

1
6 · υ2,s

υ2,l
· 2

υ2,l
. if υ1(P ) ∈ [υ2,s, υ2,l]

1
6 · υ2,s

υ2,l
· 1

υ2,lυ3
2,s

·

(
2υ3

2,s − 6υ2,lυ2,s · (υ1 − υ2,l)
)

+ 1
6 · υ2,s

υ2,l
·

1
υ2,lυ3

2,s

·

(
6(υ2,l − υ2,s) · (υ1 − υ2,l)2 + 4 · (υ1 − υ2,l)3

)
, if υ1(P ) ≥ max(υ2,l, υ2,s)

which has sign:

≤ 0, if υ1(P ) ≤ min
(

3
4 ·

(
υ2,l + υ2,s −

√
υ2

2,l + υ2
2,s − 2

3υ2,lυ2,s

)
, υ2,l, υ2,s

)

≥ 0, if υ1(P ) ∈

[
3
4 ·

(
υ2,l + υ2,s −

√
υ2

2,l + υ2
2,s − 2

3υ2,lυ2,s

)
, min(υ2,l, υ2,s)

]

≥ 0, if υ1(P ) ∈ [υ2,l, υ2,s]

≥ 0, if υ1(P ) ∈ [υ2,s, υ2,l]

≥ 0, if υ1(P ) ∈

[
max (υ2,l, υ2,s) ,

3
4 ·

(
υ2,l + υ2,s +

√
υ2

2,l + υ2
2,s − 2

3υ2,lυ2,s

)]

≤ 0 if υ1(P ) ∈

[
3
4 ·

(
υ2,l + υ2,s +

√
υ2

2,l + υ2
2,s − 2

3υ2,lυ2,s

)
, υ2,l + υ2,s

]
,

implying that the impact of θ on the slope of the demand curve changes sign maximally

twice. If ∆θ < 0, then the demand function features a steeper decline at high values of

P , is flatter at intermediate values of P , and has a steeper decline at low values of P .

The demand curve becomes flatter, because total risk exposure is more homogenous if

the correlation is more negative, i.e. θ is lower. However, at high and low premia, there

is a steeper decline because extreme risk individuals are still possible, i.e. with a high

pair of risks (s = 1, l = 1) or a low pair of risks (s = 0, l = 0).
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C.4 Derivation of Optimal Life Care Annuities

The first-order condition is:

0 = ∂F(ρ)
∂ρ

= 2 · E
(

PR(ξ, ρ) · ∂PR(ξ, ρ)
∂ρ

)
, with:

PR(ξ, ρ) = s(ξ) + l(ξ) · ρ

E(s(ξ)) + E(l(ξ)) · ρ
− 1, (C.8)

First, we determine ∂P R(ξ,ρ)
∂ρ . Suppose ρ ̸= −E(s(ξ))

E(l(ξ)) , E(s(ξ)) ̸= 0 and E(l(ξ)) ̸= 0, then:

∂PR(ξ, ρ)
∂ρ

= l(ξ) · {E(s(ξ)) + ρ · E(l(ξ))} − ·E(l(ξ)) · {s(ξ) + ρ · l(ξ)}
{E(s(ξ)) + ρ · E(l(ξ))}2

= l(ξ) · E(s(ξ)) − E(l(ξ)) · s(ξ)
{E(s(ξ)) + ρ · E(l(ξ))}2 (C.9)

= ω(ρ)2 ·
{

l(ξ)
E(l(ξ)) − s(ξ)

E(s(ξ))

}
and: ω(ρ) =

√
E(l(ξ)) · E(s(ξ))

E(s(ξ)) + ρ · E(l(ξ)) ̸= 0.

We use this result to solve first-order condition (C.8):

0 = 2 · E

PR(ξ, ρ) · ∂PR(ξ, ρ)
∂ρ

∣∣∣∣∣
ρ=ρ⋆


= 2 · E

({
s(ξ) − E(s(ξ)) + ρ⋆ · (l(ξ) − E(l(ξ)))

E(s(ξ)) + ρ⋆ · E(l(ξ))

}
· Ω(ξ)

)
· ω(ρ⋆)2 →

E {(s(ξ) − E(s(ξ))) · Ω(ξ)} = −ρ⋆ · E {(l(ξ) − E(l(ξ))) · Ω(ξ)} →

ρ⋆ = E(s(ξ))
E(l(ξ)) ·

E
{(

s(ξ)
E(s(ξ)) − 1

)
· Ω(ξ)

}
E
{(

l(ξ)
E(l(ξ)) − 1

)
· −Ω(ξ)

} , with: Ω(ξ) = l(ξ)
E(l(ξ)) − s(ξ)

E(s(ξ))
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Substituting back Ω(ξ) gives:

ρ⋆ = E(s(ξ))
E(l(ξ)) ·

E
{{

s(ξ)
E(s(ξ)) − 1

}{
l(ξ)

E(l(ξ)) − s(ξ)
E(s(ξ))

}}
E
{{

l(ξ)
E(l(ξ)) − 1

}{
s(ξ)

E(s(ξ)) − l(ξ)
E(l(ξ))

}}

= E(s(ξ))
E(l(ξ)) ·

E
{{

s(ξ)
E(s(ξ))

}{
l(ξ)

E(l(ξ))

}}
+ E

{
s(ξ)

E(s(ξ))

}
− E

{
l(ξ)

E(l(ξ))

}
− E

{{
s(ξ)

E(s(ξ))

}2
}

E
{{

l(ξ)
E(l(ξ))

}{
s(ξ)

E(s(ξ))

}}
+ E

{
l(ξ)

E(l(ξ))

}
− E

{
s(ξ)

E(s(ξ))

}
− E

{{
l(ξ)

E(l(ξ))

}2
}

= E(s(ξ))
E(l(ξ)) ·

Cov
{

s(ξ)
E(s(ξ)) , l(ξ)

E(l(ξ))

}
− Var

{
s(ξ)

E(s(ξ))

}
Cov

{
s(ξ)

E(s(ξ)) , l(ξ)
E(l(ξ))

}
− Var

{
l(ξ)

E(l(ξ))

}

= E(s(ξ))
E(l(ξ)) ·

SD
{

s(ξ)
E(s(ξ))

}
SD
{

l(ξ)
E(l(ξ))

} − Corr
{

s(ξ)
E(s(ξ)) , l(ξ)

E(l(ξ))

}
{

SD
{

s(ξ)
E(s(ξ))

}
SD
{

l(ξ)
E(l(ξ))

}}−1

− Corr
{

s(ξ)
E(s(ξ)) , l(ξ)

E(l(ξ))

} .

Note that to get from step two to three we use the identity E
{

l(ξ)
E(l(ξ))

}
= E

{
s(ξ)

E(s(ξ))

}
= 1.

To examine the behavior of ρ⋆ to changes in E(s(ξ))
E(l(ξ)) ,

SD
{

s(ξ)
E(s(ξ))

}
SD
{

l(ξ)
E(l(ξ))

} and Corr
{

s(ξ)
E(s(ξ)) , l(ξ)

E(l(ξ))

}
,

we can compute the corresponding partial derivatives:

∂ρ⋆

∂ E(s(ξ))
E(l(ξ))

= E(l(ξ))
E(s(ξ)) · ρ⋆ =



= 0 if
SD
{

s(ξ)
E(s(ξ))

}
SD
{

l(ξ)
E(l(ξ))

} = Corr{·}

> 0 if Corr{·} ≤ 0

> 0 Corr{·} > 0 ∧
SD
{

s(ξ)
E(s(ξ))

}
SD
{

l(ξ)
E(l(ξ))

} ∈
(

Corr{·}, 1
Corr{·}

)
< 0 elsewhere.

Note:

∂ρ⋆

∂
SD
{

s(ξ)
E(s(ξ))

}
SD
{

l(ξ)
E(l(ξ))

} = E(s(ξ))
E(l(ξ)) ·

2 ·
SD
{

s(ξ)
E(s(ξ))

}
SD
{

l(ξ)
E(l(ξ))

} −
(

SD
{

s(ξ)
E(s(ξ))

}
SD
{

l(ξ)
E(l(ξ))

})2

· Corr{·} − Corr{·}(
1 −

SD
{

s(ξ)
E(s(ξ))

}
SD
{

l(ξ)
E(l(ξ))

} · Corr{·}
)2
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then:

∂ρ⋆

∂
SD
{

s(ξ)
E(s(ξ))

}
SD
{

l(ξ)
E(l(ξ))

} =



= 0 if Corr{·} > 0 ∧
SD
{

s(ξ)
E(s(ξ))

}
SD
{

l(ξ)
E(l(ξ))

} = 1
Corr{·} ±

√
1

Corr{·}2 − 1

< 0 if Corr{·} > 0 ∧
SD
{

s(ξ)
E(s(ξ))

}
SD
{

l(ξ)
E(l(ξ))

} /∈
(

1
Corr{·} −

√
1

Corr{·}2 − 1, 1
Corr{·} +

√
1

Corr{·}2 − 1
)

> 0 elsewhere.

Lastly:

∂ρ⋆

∂Corr{·}
= E(s(ξ))

E(l(ξ)) ·

SD
{

s(ξ)
E(s(ξ))

}
SD
{

l(ξ)
E(l(ξ))

} −
(

SD
{

s(ξ)
E(s(ξ))

}
SD
{

l(ξ)
E(l(ξ))

})−1

({
SD
{

s(ξ)
E(s(ξ))

}
SD
{

l(ξ)
E(l(ξ))

}}−1

− Corr
{

s(ξ)
E(s(ξ)) , l(ξ)

E(l(ξ))

})2 (C.10)

so:

∂ρ⋆

∂Corr{·}
=



= 0 if
SD
{

s(ξ)
E(s(ξ))

}
SD
{

l(ξ)
E(l(ξ))

} = 1

< 0 if
SD
{

s(ξ)
E(s(ξ))

}
SD
{

l(ξ)
E(l(ξ))

} < 1

> 0 if
SD
{

s(ξ)
E(s(ξ))

}
SD
{

l(ξ)
E(l(ξ))

} > 1.
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C.5 Descriptive Statistics

Table C.2: Descriptive Statistics

Mean Median S.D. Min2 Max
Individuals (N = 3,278,797 )

Uses long-term care (LTC) (%) 39.8
Passes away (%) 25.3
Observed duration LTC 1 2.3 1.3

Married households (Unbalanced panel; Panel observations= 5,906,251 )
Household income3 (000s euros)

Bottom Lifetime IQ 21.3 21.2 2.2 2.8 41.4
2nd Lifetime IQ 25.8 25.8 2.9 5.7 57.8
3rd Lifetime IQ 31.4 31.4 4.7 6.8 86.1
4th Lifetime IQ 41.1 41.2 7.8 5.9 120.7
Top Lifetime IQ 67.8 61.4 31.8 6.2 1,038.5
All 40.0 33.4 23.2 2.3 1,038.5

Liquid assets (000s euros)
Bottom Lifetime IQ 16.9 8.9 22.3 0.0 336.8
2nd Lifetime IQ 33.6 22.6 39.0 0.0 628.5
3rd Lifetime IQ 53.7 31.3 64.8 0.0 1,056.3
4th Lifetime IQ 85.2 47.6 103.1 0.0 1,753.7
Top Lifetime IQ 396.5 142.3 3,348.3 0.0 156,145.9
All 133.5 37.2 1,630.6 0.0 156,145.9

Single-person households (Unbalanced panel; Panel observations= 8,073,927)
Women (%) 76.6 42.3

Household income (000s euros)
Bottom Lifetime IQ 14.9 14.6 1.6 0.1 35.4
2nd Lifetime IQ 17.9 18.0 2.1 0.7 51.0
3rd Lifetime IQ 21.8 22.1 3.7 0.7 81.8
4th Lifetime IQ 28.0 28.5 6.3 0.8 113.1
Top Lifetime IQ 43.6 40.7 21.7 0.7 926.7
All 23.9 19.6 13.5 0.1 926.7

Liquid assets (000s euros)
Bottom Lifetime IQ 10.6 5.1 14.5 0.0 342.5
2nd Lifetime IQ 25.2 16.5 31.3 0.0 589.0
3rd Lifetime IQ 43.6 24.1 55.7 0.0 935.1
4th Lifetime IQ 74.1 38.3 91.4 0.0 1,638.7
Top Lifetime IQ 330.4 131.8 1,628.4 0.0 101,383.2
All 83.4 21.4 668.5 0.0 101,383.2

Notes: IQ = Income Quintile; 1 Conditional upon using LTC; 2 Maximum and minimum are
the averages of the one hundred highest and lowest values; 3 Income in 2015 prices. Savings
and bonds in 2015 prices, stocks inflated with AEX stock-index of 31st of December 2014.
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Table C.3: Hazard Rate Estimates

Transition No LTC → No LTC → LTC → LTC →
LTC Death LTC Death

Constant (βk) -2.938*** -4.564*** -1.626*** -2.498***
(0.014) (0.033) (0.018) (0.022)

Single at baseline (β1kh)
Men - 2nd Lifetime IQ 0.008 -0.142*** 0.044 -0.031

(0.021) (0.052) (0.027) (0.035)
Men - 3rd Lifetime IQ -0.239*** -0.192*** 0.511*** 0.303***

(0.021) (0.049) (0.027) (0.035)
Men - 4th Lifetime IQ -0.459*** -0.261*** 0.955*** 0.684***

(0.021) (0.047) (0.027) (0.037)
Men - Top Lifetime IQ -0.798*** -0.624*** 1.249*** 0.973***

(0.021) (0.048) (0.027) (0.040)
Women - Bottom Lifetime IQ -0.027* -1.245*** 0.874*** -0.365***

(0.015) (0.041) (0.020) (0.026)
Women - 2nd Lifetime IQ -0.178*** -1.618*** 1.203*** -0.317***

(0.016) (0.049) (0.021) (0.030)
Women - 3rd Lifetime IQ -0.360*** -1.615*** 1.501*** -0.024

(0.017) (0.050) (0.021) (0.033)
Women - 4th Lifetime IQ -0.535*** -1.709*** 1.754*** 0.227***

(0.017) (0.051) (0.022) (0.035)
Women - Top Lifetime IQ -0.723*** -1.988*** 1.952*** 0.499***

(0.018) (0.055) (0.023) (0.038)
Married at baseline - currently single (β1kh)
Men - Bottom Lifetime IQ -0.442*** -0.000 1.066*** 0.952***

(0.019) (0.049) (0.026) (0.034)
Men - 2nd Lifetime IQ -0.696*** -0.362*** 1.245*** 1.075***

(0.018) (0.045) (0.024) (0.032)
Men - 3rd Lifetime IQ -0.868*** -0.593*** 1.351*** 1.175***

(0.018) (0.045) (0.024) (0.032)
Men - 4th Lifetime IQ -1.074*** -0.662*** 1.477*** 1.273***

(0.018) (0.045) (0.024) (0.034)
Men - Top Lifetime IQ -1.326*** -0.932*** 1.602*** 1.382***

(0.019) (0.045) (0.025) (0.037)
Women - Bottom Lifetime IQ -0.203*** -1.724*** 1.459*** -0.648***

(0.017) (0.049) (0.022) (0.029)
Women - 2nd Lifetime IQ -0.411*** -1.731*** 1.648*** -0.294***

(0.016) (0.047) (0.021) (0.029)
Women - 3rd Lifetime IQ -0.643*** -1.672*** 1.773*** 0.111***

(0.017) (0.047) (0.021) (0.030)
Women - 4th Lifetime IQ -0.864*** -1.863*** 1.913*** 0.440***

(0.017) (0.049) (0.022) (0.033)
Women - Top Lifetime IQ -1.079*** -2.013*** 2.000*** 0.752***

(0.018) (0.050) (0.023) (0.035)
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Table C.3: (continued)

Transition No LTC → No LTC → LTC → LTC →
LTC Death LTC Death

Married at baseline - currently single (βk
1kh + βk

2kh)
Men - Bottom Lifetime IQ -0.723*** -0.397*** 1.546*** 1.385***

(0.016) (0.038) (0.022) (0.029)
Men - 2nd Lifetime IQ -1.027*** -0.671*** 1.727*** 1.678***

(0.016) (0.037) (0.021) (0.028)
Men - 3rd Lifetime IQ -1.244*** -0.807*** 1.821*** 1.948***

(0.016) (0.036) (0.021) (0.028)
Men - 4th Lifetime IQ -1.448*** -0.958*** 1.910*** 2.165***

(0.016) (0.037) (0.021) (0.029)
Men - Top Lifetime IQ -1.655*** -1.128*** 1.949*** 2.333***

(0.016) (0.037) (0.022) (0.030)
Women - Bottom Lifetime IQ -0.494*** -1.969*** 1.738*** -0.362***

(0.015) (0.043) (0.020) (0.028)
Women - 2nd Lifetime IQ -0.743*** -1.890*** 1.901*** 0.091***

(0.015) (0.040) (0.020) (0.027)
Women - 3rd Lifetime IQ -0.992*** -1.729*** 2.014*** 0.688***

(0.015) (0.040) (0.020) (0.028)
Women - 4th Lifetime IQ -1.231*** -1.808*** 2.115*** 1.117***

(0.016) (0.040) (0.020) (0.029)
Women - Top Lifetime IQ -1.422*** -1.863*** 2.189*** 1.617***

(0.016) (0.040) (0.021) (0.030)

γk 0.076*** 0.137*** -0.028*** 0.075***
(0.001) (0.003) (0.002) (0.002)

Single at baseline (γkh)
Men - 2nd Lifetime IQ -0.003* -0.012*** 0.007*** 0.005**

(0.002) (0.005) (0.002) (0.002)
Men - 3rd Lifetime IQ 0.007*** -0.020*** -0.009*** -0.005**

(0.002) (0.005) (0.002) (0.002)
Men - 4th Lifetime IQ 0.014*** -0.024*** -0.026*** -0.018***

(0.002) (0.004) (0.002) (0.002)
Men - Top Lifetime IQ 0.026*** -0.016*** -0.027*** -0.027***

(0.002) (0.004) (0.002) (0.002)
Women - Bottom Lifetime IQ 0.003** 0.006* -0.036*** -0.010***

(0.001) (0.003) (0.002) (0.002)
Women - 2nd Lifetime IQ 0.009*** 0.002 -0.043*** -0.012***

(0.001) (0.004) (0.002) (0.002)
Women - 3rd Lifetime IQ 0.015*** -0.001 -0.051*** -0.022***

(0.001) (0.004) (0.002) (0.002)
Women - 4th Lifetime IQ 0.021*** 0.002 -0.055*** -0.027***

(0.001) (0.004) (0.002) (0.002)
Women - Top Lifetime IQ 0.025*** 0.017*** -0.056*** -0.033***

(0.001) (0.004) (0.002) (0.002)
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Table C.3: (continued)

Transition No LTC → No LTC → LTC → LTC →
LTC Death LTC Death

Married at baseline (γkh)
Men - 1st Lifetime IQ 0.026*** -0.012*** -0.044*** -0.021***

(0.001) (0.003) (0.002) (0.002)
Men - 2nd Lifetime IQ 0.038*** -0.011*** -0.048*** -0.028***

(0.001) (0.003) (0.002) (0.002)
Men - 3rd Lifetime IQ 0.044*** -0.011*** -0.047*** -0.029***

(0.001) (0.003) (0.002) (0.002)
Men - 4th Lifetime IQ 0.048*** -0.010*** -0.043*** -0.029***

(0.001) (0.003) (0.002) (0.002)
Men - Top Lifetime IQ 0.052*** -0.002 -0.039*** -0.028***

(0.001) (0.003) (0.002) (0.002)
Women - 1st Lifetime IQ 0.014*** 0.019*** -0.063*** -0.003*

(0.001) (0.004) (0.002) (0.002)
Women - 2nd Lifetime IQ 0.025*** 0.001 -0.066*** -0.016***

(0.001) (0.004) (0.002) (0.002)
Women - 3rd Lifetime IQ 0.034*** -0.007** -0.064*** -0.029***

(0.001) (0.004) (0.002) (0.002)
Women - 4th Lifetime IQ 0.041*** -0.000 -0.062*** -0.038***

(0.001) (0.004) (0.002) (0.002)
Women - Top Lifetime IQ 0.046*** 0.012*** -0.057*** -0.043***

(0.001) (0.004) (0.002) (0.002)
Frailty: ln(σ2) -16.369 0.261 -21.026 -2.104
Spells 4,028,551 4,028,551 1,795,027 1,795,027
Uncensored spells 1,425,236 206,997 770,070 622,346
Individuals 3,063,815 3,063,815 1,303,914 1,303,914
Sub-Log-likelihood (C.2) -4,468,814.2 -1,055,077.0 -1,632,120.1 -1,530,497.4
Log-Likelihood -5,523,891.2 -3,162,617.5
Sub-Log-likelihood (σ2 = 0) -4,468,814.2 -1,057,575.3 -1,632,120.1 -1,538,180.9
Log-Likelihood (σ2 = 0) -5,526,389.5 -3,170,301.0
LR test (H0 : σ2 = 0) p > 0.10 p < 0.01 p > 0.10 p < 0.01

Notes: Significance levels: * 10-%; **5-%; ***1-%. IQ = Income Quintile
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C.6. Additional Results 197

C.6.2 Premium Returns

Table C.5: Premium Returns for Different Groups (in %)

Income quintile: Bottom Second Third Fourth Top
Household level (ρ∗ = 1.35)

Pension Annuity −8.9
(−9.6;−8.2)

−2.6
(−3.2;−1.9)

−0.6
(−1.1;−0.1)

1.5
(1.0;2.0)

3.6
(3.2;4.0)

LTC insurance 29.9
(27.6;31.9)

17.9
(16.0;19.7)

4.1
(2.7;5.6)

−6.0
(−7.4;−4.7)

−17.0
(−18.2;−15.8)

Life care annuity −1.4
(−2.2;−0.8)

1.4
(0.6;2.0)

0.3
(−0.4;0.9)

0.1
(−0.5;0.7)

−0.3
(−0.7;0.0)

Single Men (ρ∗ = 2.11)
Pension Annuity −12.0

(−13.9;−10.1)
−8.3

(−10.7;−5.9)
−3.3

(−5.5;−1.3)
1.9

(0.1;3.7)
11.8

(10.1;13.4)
LTC insurance 29.8

(24.9;34.8)
28.9

(23.0;34.7)
2.3

(−2.0;6.7)
−13.8

(−17.4;−10.0)
−21.6

(−25.0;−18.3)
Life care annuity 0.0

(−2.0;1.9)
2.4

(−0.3;4.9)
−1.7

(−4.3;0.8)
−2.6

(−4.6;−0.4)
2.2

(0.8;3.8)

Single Women (ρ∗ = 1.47)
Pension Annuity −7.7

(−8.6;−6.8)
−0.7

(−2.0;0.5)
1.7

(0.5;3.0)
3.4

(2.2;4.5)
5.6

(4.5;6.9)
LTC insurance 16.0

(13.8;18.3)
12.5

(9.4;15.6)
1.1

(−1.7;4.0)
−10.7

(−13.2;−8.1)
−20.8

(−23.2;−18.2)
Life care annuity −1.7

(−2.6;−0.9)
2.6

(1.1;4.1)
1.6

(0.1;3.1)
−0.1

(−1.5;1.2)
−1.0

(−1.9;0.1)

Married Men (ρ∗ = 11.16)
Pension Annuity −12.9

(−14.5;−11.4)
−6.2

(−7.3;−5.2)
−2.4

(−3.2;−1.5)
1.7

(0.9;2.4)
5.3

(4.6;6.0)
LTC insurance 4.2

(−1.9;10.1)
8.5

(4.1;12.9)
5.2

(2.0;8.6)
0.1

(−2.7;3.0)
−8.0

(−10.4;−5.3)
Life care annuity −3.1

(−6.5;−0.9)
2.1

(−0.7;4.7)
2.0

(−0.2;4.1)
0.8

(−1.1;2.7)
−2.3

(−3.5;−0.8)

Married women (ρ∗ = 0.08)
Pension Annuity −1.7

(−3.1;−0.4)
0.3

(−0.7;1.3)
−0.3

(−1.1;0.5)
0.4

(−0.3;1.1)
0.0

(−0.6;0.7)
LTC insurance 26.8

(22.1;31.6)
21.1

(17.8;24.3)
7.0

(4.6;9.5)
−3.4

(−5.5;−1.2)
−15.9

(−17.8;−14.0)
Life care annuity −1.3

(−2.6;0.0)
0.6

(−0.2;1.4)
−0.2

(−0.9;0.6)
0.4

(−0.4;1.1)
−0.2

(−0.6;0.3)

Notes: The table provides the data to Figures 3.2 and 3.4. The premium returns are population-
averaged measures for the life cycle simulation of 100, 000 individuals. Medians across 5,000
bootstrapped samples and the 2.5thand 97.5th percentile (in brackets) are shown.
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Appendix D: Chapter 4
D.1 Life Cycle Model

D.1.1 Government Budget Constraint

The government collects the taxes and co-payments to finance expenditures on the

first pillar pension and LTC provision. Yet, government revenues and spending are not

guaranteed to be balanced in the model. To let the government break even, we assume

additional fixed transfers of TrSS and TrLT C(a tax or subsidy) in each age period. For

a household of a given age, the government expenditures on LTC are:

LTC(hm
t , hf

t ) =


2 · LTCcost if hm

t = 2 and hf
t = 2,

LTCcost if hm
t = 2 or hf

t = 2,

0 elsewhere,

where LTCcost = e58, 500 is the cost of an individual stay in a public institution for a

year.

Similarly, the government pays first pillar pension:

SS(t, hm
t , hf

t ) =


2 · w if t ≥ 65, hm

t ̸= 3 and hf
t ̸= 3,

1.4 · w if t ≥ 65, hm
t = 3 or hf

t = 3,

0 elsewhere.

These are the expenditures per household and conditional upon age t and health statuses

hm
t and hf

t . Total, i.e., unconditional, government expenditures GELT C and GESS are

the expenditures per household weighted by the steady-state distribution on household
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200 Appendix D. Chapter 4

types f(ℵ), with ℵ = ℵW ∪ ℵR = (at, θ, ηt, ϵt, DBt, ft, hm
t , hf

t , t)′. Then:

GESS = σ1 ·
∫
ℵ

f(ℵ) · SS(ℵ)dℵ, and GELT C = σ2 ·
∫
ℵ

f(ℵ) · LTC(ℵ)dℵ,

where σ1 and σ2 reflect the share of government expenditures financed through dedicated

taxes and co-payments. The rest is financed with general taxes and not of interest when

balancing the government budget.1

To finance these benefits, the government obtains revenue from taxes and co-payments:

τSS(·), τL(·), and m(·). Also, there is an additional balancing transfer Trx with x ∈

(SS, L). The transfer is defined as follows:

Trx(f) =


2 · Trx if f = couple

Trx if f = single woman or single man,

and is thus twice as large for couples than for singles.

Government revenues, GRx, are given by:

GRSS(TrSS) =
∫
ℵ

f(ℵ) · (τSS(ℵ) + TrSS(ℵ)) dℵ and

GRLT C(TrLT C) =
∫
ℵ

f(ℵ) · (τL(ℵ) + m(ℵ) + TrLT C(ℵ)) dℵ,

which consist of the sum of taxes, co-payments for LTC, and the additional tax (subsidy)

that balances the government budget constraint.

The government sets the transfer levels Trx according to: GEx = GRx(Trx), which

can be tax or subsidy, depending on whether there is a deficit or a surplus. Appendix

D.1.4 explains how we compute these transfers numerically.
1We take the values from 2010: σ1 = 0.664 and σ2 = 0.640, which we com-

puted using aggregate expenditures and revenues reported on: https://www.cbs.nl/nl-
nl/nieuws/2019/37/inkomsten-uit-sociale-premies-6-1-miljard-hoger-in-2018, and
https:/opendata.cbs.nl/statline/CBS/nl/dataset/84121NED/table?ts=1564565763409, [both re-
trieved on: August 7th, 2023].

https://www.cbs.nl/nl-nl/nieuws/2019/37/inkomsten-uit-sociale-premies-6-1-miljard-hoger-in-2018
https://www.cbs.nl/nl-nl/nieuws/2019/37/inkomsten-uit-sociale-premies-6-1-miljard-hoger-in-2018
https://https/opendata.cbs.nl/statline/CBS/nl/dataset/84121NED/table?ts=1564565763409
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D.1. Life Cycle Model 201

D.1.2 Closed-form Solution for Policy Function Iteration

We elaborate here on how the households determine their consumption policy functions.

We use the Bellmann maximization principle, which recursively solves the household

optimization problem from the last to the first life cycle period. The objective function

is the value function in this case. A general form of the value function in any state

ℵ = ℵW ∪ ℵR is given by:

V(ℵ; hm
t = i, hf

t = j) = max
ct,at+1

uf (ct) (D.1)

+ β ·
(

(1 − πi,j
3,3(t, I)) · E[V(ℵ+)|ℵ] + πi,j

3,3(t, I) · B(at+1)
)

s.t. at+1 = R · at + yt − τSS − τL − τG − mt + TrSS(·) + TrLT C(·) − ct ≥ 0,

where (i, j) ∈ {1, 2, 3}. The Lagrangian optimization problem corresponding to (D.1)

reads as:

max
ct,at+1,λ

L(·) = uf (ct) + β ·
(

(1 − πi,j
3,3(t, I)) · E[V(ℵ+)|ℵ] + πi,j

3,3(t, I) · B(at+1)
)

(D.2)

+ λ · {R · at + yt − τSS − τL − τG − mt + TrSS(·) + TrLT C(·) − ct − at+1} ,

which has the following first-order constraints:

∂L(·)
∂ct

:= uf
ct − λ = 0 (D.3)

∂L(·)
∂at+1

:= β ·
(

(1 − πi,j
3,3(t, I) · E[Vat+1(ℵ+)|ℵ] + πi,j

3,3(t, I) · Bat+1(at+1)
)

− λ = 0 (D.4)

∂L(·)
∂λ

:= R · at + yt − τSS − τL − τG − mt + TrSS(·) + TrLT C(·) − ct − at+1 = 0. (D.5)

Note that V(ℵ) in (D.1) is an optimum, and so is the Lagrangian in (D.2) when analyzed

in ct(ℵ), at+1(ℵ), and λ(ℵ). As a consequence, we can apply the envelope theorem:

Vat
(ℵ) = ∂V(ℵ)

∂at
= ∂L(·)

∂at

∣∣∣∣
ct(ℵ),at+1(ℵ),λ(ℵ)

= λ(ℵ) · R,
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202 Appendix D. Chapter 4

which has to hold in the next period as well:

Vat+1(ℵ+) = ∂V(ℵ+)
∂at+1

= ∂L(·)
∂at+1

∣∣∣∣
ct+1(ℵ+),at+2(ℵ+),λ(ℵ+)

= λ(ℵ+) · R, (D.6)

where ℵ+ is the state vector in the next period. Furthermore, (D.3) holds optimally in

the future:

uf+

ct+1

(
ct+1(ℵ+)

)
= λ(ℵ+). (D.7)

Combining (D.6) and (D.7) yields:

Vat+1(ℵ+) = uf+

ct+1

(
ct+1(ℵ+)

)
· R (D.8)

Using (D.8), we build the Euler equation that describes the evolution of consumption and

assets over time. We combine (D.8) with (D.3) and (D.4), while (D.5) simultaneously

holds (together with the non-negativity constraint of assets). The Euler equation on

consumption and bequests (assets) is:

uf
ct

(ct(ℵ)) = β
(

(1 − πi,j
3,3(t, I)) · R · E[uf+

ct+1

(
ct+1(ℵ+)

)
|ℵ] + πi,j

3,3(t, I) · Bat+1(at+1(ℵ))
)

with: at+1(ℵ) = R · at + yt − τSS − τL − τG − mt + TrSS(·) + TrLT C(·) − ct(ℵ) ≥ 0

(D.9)

This system can be recursively solved if we know the solution for the last period.

D.1.3 Terminal Period Solution

We now solve the dynamic program problem for the terminal (last) period t = T . Note

that the household will not be around in the next period (πi,j
3,3(T, I) = 1) but can

bequeath, where (i, j) ∈ {1, 2, 3}. The terminal period solution of (D.9) in state ℵ
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D.1. Life Cycle Model 203

reduces to:

uf
cT

(cT (ℵ)) = β · BaT +1(aT +1(ℵ))

aT +1(ℵ) = R · aT + yT − τSS − τL − τG − mT + TrSS(·) + TrLT C(·) − ct(ℵ)

= µ − cT (ℵ) ≥ 0 (D.10)

where µ is the total wealth holding at age T that is split over consumption and a bequest.

To solve the system, we have to consider three cases: ϕ = 0 (no bequest), ϕ ∈ (0, 1)

(some wealth above threshold ca is bequeathed), and ϕ = 1 (all wealth above threshold

ca is bequeathed). The marginal utility of leaving a bequest is:

BaT +1(aT +1) =


0 if ϕ = 0

ϕ
1−ϕ

σ
·
(

ϕ
1−ϕ · ca + aT +1

)−σ

if ϕ ∈ (0, 1)

c−σ
a if ϕ = 1.

Also, marginal utility from consumption depends on family structure:

ucT
(cT ) =


c−σ

T if fT = single man or woman

2 ·
(

1
η

)1−σ

· c−σ
T if fT = couple.

If ϕ = 0, the Euler equation in (D.10) becomes:

uf
cT

(cT (ℵ)) = β · BaJ+1(aJ+1(ℵ)) →

uf
cT

(cT (ℵ)) > β · 0 →

cT (ℵ, µ) = µ,

where the latter equality stems from the budget constraint in (D.10).
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204 Appendix D. Chapter 4

If ϕ = 1, the Euler equation in (D.10) becomes:

β · BaJ+1(aJ+1(ℵ)) =


c−σ

T if fT = single man or woman

2 ·
(

1
η

)1−σ

· c−σ
T if fT = couple.

Solving for cT gives:

cT (ℵ, µ) =


min

(
β− 1

σ · ca, µ
)

if fT = single man or woman

min
(

2 1
σ ·
(

1
η

) 1
σ −1

· β− 1
σ · ca, µ

)
if fT = couple.

Similarly, we solve the Euler equation for ϕ ∈ (0, 1) and get:

cT (ℵ, µ) = min
((

x1(fT )
x1(fT ) + x2

· x−1
1 (fT ) · ca + x2

x1(fT ) + x2
· µ

)
, µ

)

with:

x−1
1 (fT ) =


β− 1

σ if fT = single man or woman

2 1
σ ·
(

1
η

) 1
σ −1

· β− 1
σ if fT = couple,

and x2 =
(

ϕ
1−ϕ

)−1
.

Note that the bequest size is aT +1(ℵ, µ) = max (µ − cT (ℵ, µ) , 0) in all cases.

D.1.4 Numerically Solving the Model

We first discretize the state space and then solve the model along the discrete space.

Discretizing the state space Consider the vector with state variables ℵ = ℵW ∪ℵR =

(at, θ, ηt, ϵt, DBt, ft, hm
t , hf

t , t)′. This vector contains continuous variables at, θ, ηt, DBt,

and ϵt. Solving the Euler equation for each value is computationally too demanding and

we, therefore, discretize these variables while maintaining the core properties of their

distribution.
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We discretize labor productivity θ ∼ N (0, σ2
θ) and the transitory income shock

ϵ ∼ N (0, σ2
ϵ ) into a five- and three-dimensional grid using Gauss–Hermite quadrature.

We discretize the stochastic AR(1)-variable ηt into a time-independent three-state

Markov process. We use the decomposition method by Rouwenhorst (1995), which

preserves the unconditional mean, the unconditional variance, and the auto-correlation

of the actual process. Kopecky and Suen (2010) describes the algorithm in detail. We

discretize the second pillar pension benefit on a 12-dimensional exponential grid from 0

to 150, 000 (growth rate = 0.52).

Lastly, we discretize assets (at) over a grid Â from e0 to e1,000,000. The asset grid

contains 100 values. To prevent oscillation of the model for asset levels near zero, we

take an exponential grid, i.e., we take relatively more low than high values for assets at

on the grid (growth rate = 0.05).

Solving the model We require the probability distribution of assets at+1(ℵ) and

consumption ct(ℵ) at any age t. Suppose all parameter values are known in the model.

We apply policy function iteration to solve the model and then compute the probability

distribution.

We start with the closed-form solution of the terminal period T provided in Appendix

D.1.3. We hereafter numerically solve the Euler equation system (D.9) from period T − 1

back to period 1 and calculate the resulting policy functions ct(ℵ) and at+1(ℵ).

Next, we compute the distribution of households over the state space ℵ. To increase

computational speed, we analytically compute the distribution rather than infer this from

a simulation (see, e.g., Cagetti, 2003). Furthermore, directly computing the distribution

prevents that in an agent-based simulation, it remains unknown for what number of

households the model statistics converge.

We compute the state distribution at age t by updating the state distribution at

time t − 1. For this, we assume an initial state distribution at age t = 25. The initial

household consists of a couple without using LTC. They draw labor productivity level θ

from the discrete distribution. We take a0 = 0, DB25 = 0, and η24 = 0, so the household
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initially has no assets, pension accruals, and income shock. This distribution is modified

to create a distribution over the state space for age 26. Given the current state ℵ at

age 25, we know how many assets any household chooses to possess at age 26 and the

conditional probability of ending up in a particular health and income state at age 26.

This information (transition matrix) suffices to update the state distribution of ℵ from

age 25 to the distribution at age 26. We repeat this procedure until age t = T = 100.

These state distributions are also essential to compute the transfer Trx that would

balance the government budget (see Appendix D.1.1), x ∈ (SS, LTC). For each state,

we know the cost of providing LTC and pension, the paid taxes, and co-payments. We

can subsequently compute the expected government revenues and costs. We apply a

bisection search to find the level Trx that exactly balances the revenues and cost.

D.2 First-stage Estimates

D.2.1 Data and Estimation of the Health Processes

Socioeconomic differences in LTC use and mortality are the primary input in our analysis.

To quantify them, we use longitudinal data on LTC use and mortality, a simulation

model to compute complete life histories on LTC use and death, and a socioeconomic

status measure to stratify the life histories. The data and estimation procedure of the

health process closely follows Chapter 3, which we will summarize here.

We use unique registry data from Statistics Netherlands reporting an individual and

household key, institutional care use, death, marital status, birth date, and gender for

the Dutch population between 2006 and 2014. The data are unique due to their high

frequency: the registers daily report whether an individual stays in an institution, i.e., a

residential or nursing home, died, and has a partner, i.e., is married, has a partnership

contract, or cohabits on a contractual basis. The high frequency of the data allows us

to precisely model many short institutional care spells that occur (see Chapter 2 of this

thesis). Furthermore, it will enable us to model the effect of marital status on LTC use

and mortality precisely from the moment of marital dissolution onward.
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We restrict the estimation of the health process to households whose members are

both retired, i.e., aged 65 or older and have retirement income as their main income

source. The age restriction seems natural as only 1.0% of the 65-year-olds in our sample

uses institutional care. To save on the number of heterogeneous groups, and thus state

space of the life cycle model, we further restrict to individuals who are or were married

at age 65. We observe 2,548,664 individuals and 1,487,109 households.

To construct a socioeconomic measure, we merge this data to household records on

income – the sum of couple members’ pre-tax income (incl. social transfers and pension

income) – and financial assets (savings, stocks, and bonds). The socioeconomic status

measure is the average sum of equivalized household income and annuitized financial

assets (savings, stocks, and bonds), reflecting lifetime income. This comprehensive

measure has the advantage that it considers that after retirement, some households

have little income but many assets, e.g., former entrepreneurs (Knoef et al., 2016).

We compute lifetime income quintiles I ∈ {1, 2, 3, 4, 5} depending on quintiles of its

distribution.2

To compute complete life histories on LTC use and death, we use the competing risk

model from Chapter 3 that allows for socioeconomic dependencies in risks and explicitly

accounts for the spouse as a potential informal care provider. We distinguish three

individual states: not using public institutional care (i = 1), using public institutional

care (i = 2), or death (i = 3). Home-based care use is not a separate state because

its co-payments and, thus, redistributive effects are very limited in the Netherlands

(Tenand et al., 2020b). For parsimony, marital status is modeled as a covariate, and not

as a separate (sub-)state in the competing risk model. As a first step, we specify and

estimate a proportional hazard model for the transition rate λij of going from a given

state i to state j ̸= i at age t (van den Berg, 2001):

λij(t | mar(t), G, I) = exp (γij(G, I) · t + cij(G, I) + βij(G, I) · mar(t)) (D.11)
2An alternative would be to take the level of education, but the register on education is incomplete

for older cohorts, implying we have to stick to the current data.
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where γij is the age effect, cij is the effect of being single, and cij + βij is the effect

of having a partner (mar(t) = 0: has no partner; mar(t) = 1 has no partner). All

coefficients are estimated conditional upon gender G and lifetime income quintile I.3

We estimate the model following standard log-likelihood inference for duration models

(see Chapter 5 in this thesis).

Because we observe the relevant outcomes only between 2006 and 2014, we use the

estimates of (D.11) to simulate complete life histories on LTC use, marital status, and

mortality. We generate a survival probability and thus a random timing of the transition

from i to j:

Sij(t | mar(t), G, I) = P(T ≥ t, j| mar(t), G, I, i) = exp
(

−
∫ t

0
λij(τ | mar(τ), G, I)dτ

)
(D.12)

The simulation starts at age 65 with 100,000 households, when both couple members

are alive. Each individual can move to two possible destination states. Using (D.12),

we draw a transition time for each state. The minimum of the two transition times

determines which actual transition occurs. We repeat this procedure for the successive

states until both members died. While the simulation is finished for the couple member

who dies first, we still have to simulate the life history of LTC use for the surviving

partner after widowhood. We use (D.12) but take the dummy value mar(t) = 0 instead

of mar(t) = 1. After this last spouse dies, we stop the simulation and have the complete

–and dependent– life histories on LTC use and mortality for the two partners.

3See Appendix D.2.2 for the fit on LTC use and mortality. We also estimated a model including
frailty, but this specification gave a worse fit on LTC use and mortality.
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D.2.2 Goodness of Fit of Health Processes

Figure D.1: Goodness of Fit of Survival Curves
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Notes: The figure compares the empirical survival curves with their simulated counterpart.
The simulated curves are population-averaged measures of a life cycle simulation of 100, 000
households with 1, 000 bootstrapped samples.
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Figure D.2: Goodness of Fit of Long-term Care Use
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Notes: The figure compares the empirical long-term care curves with their simulated
counterpart. The simulated curves are population-averaged measures of a life cycle simulation
of 100, 000 households with 1, 000 bootstrapped samples.
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D.2.3 Age Profile on Income

Figure D.3 presents the model estimates for the age profile {c + log(αt)}64
t=25. c is the

fixed effect for the 1950 cohort, which we add because we want to tailor the income

profile to the 1950 cohort. Figure D.3 displays a familiar hump-shape (cf. Mincer,

1974): income peaks at age 55 and decreases after that. This pattern arises due to the

accumulation and decumulation of human capital –working experience– over the life

cycle, and households start to work less when retirement nears.

Figure D.3: Estimated Age Profile on Income
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Notes: Income is measured in 0000s euros. Parameters are estimated for married households
whose oldest member is younger than 65 and born after 1949. Adding c implies normalized
estimates that refer to the age effect for those born in 1950. Data from the IPO 2001-2014:
77,118 households and 534,006 panel-year observations.

D.2.4 Income Uncertainty

We model household income dynamics as an AR(1) (canonical) process:

log(yt) = log(αt) + θ + ηt + ϵt

ηt = ρ · ηt−1 + ut

θ ∼ N (0, σ2
θ); ϵt ∼ N (0, σ2

ϵ ); ut ∼ N (0, σ2
u); η24 = 0
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First, we estimate the age effects log(αt) by running a fixed effects regression of

log household income on age dummies, where each dummy represents a distinct effect

log(αt). Next, to wash out birth cohort effects, we regress the estimate θ̂i on birth

year dummies and impute the household’s θ̂i to the value it would have if born in

1950. We then estimate the uncertain income component θ + ηt + ϵt by minimum

distance estimation, minimizing the squared difference between theoretical and empirical

moments (cf. Storesletten et al., 2004). Because we have an auto-regressive process with

a lag of one year, we match the variance and first-order auto-correlation of the income

component.

The assumptions on the persistent income component imply the following process in

terms of the past and current shocks:

ηt = ρt−24 · η24 +
t∑

j=25
ρt−j · uj + ϵt, t = 25, ., 64

from which the moments

var(θ + ηt + ϵt) = σ2
θ + ρ2(t−24) · σ2

z +
t∑

j=25
ρ2(t−j) · σ2

u + σ2
ϵ

cov(θ + ηt + ϵt, θ + ηt−1 + ϵt−1) = σ2
θ + ρ2(t−24)−1 · σ2

z +
t∑

j=25
ρ1+2(t−j) · σ2

u

follow, allowing us to identify the moments. Identification follows standard covariance

arguments. For further details on identification, we refer to Arellano (2003).

We employ a weighted minimum distance estimator to fit these 79 moments (40 for

the variances 39 for the covariances). The objective function is the sum of squared

differences between the theoretical and empirical variances and co-variances. Due to

the small sample considerations explained in Altonji and Segal (1996), our estimator

employs the identity matrix as the weighting matrix. Hence, each moment receives the

same weight in the objective function. The estimator, which minimizes the objective

function, yields consistent but possibly inefficient estimates. Figure D.3 and Table 4.2
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in Section 4.4.1 present the estimates for the structural parameters.

Figure D.4: Fit of the Income Process Before Age 65
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Notes: Income measured in 0000s euros. We report the parameters for married households
whose oldest member is younger than age 65 and born after 1949. Data from the IPO
2001-2014: 77,118 households and 534,006 panel-year observations.

Figure D.4 shows the goodness-of-fit of the model estimates for the targeted moments.

Our model matches the variance and first-order auto-correlation (closely related to

first-order autocovariance) of the income shock process well. Notably, the variance of

the income shock increases over time, implying more heterogeneity in income when age

increases. This is important when constructing heterogeneity in asset profiles with our

life cycle model.

D.2.5 Replacement Rates

We compute the replacement rates of survivor pensions using the IPO data restricted

to households whose members are all aged 65 and over. Both members must have

retirement income as their primary income source. The IPO does not distinguish

between occupational pension benefits and income from privately purchased annuities

(third pillar), so the replacement rate reflects both occupational and privately-arranged

pension benefits. We run a fixed effects regression of log private pension income on year

dummies and the family structure: being a couple, a single man, or a single woman. The
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exponentiated coefficient for singles gives their replacement rate. The estimates for a

single man or woman are rrm = 0.93 (SE: 0.001) and rrf = 0.55 (SE: 0.005), respectively.

The widow’s replacement rate means that each euro of a defined pension benefit drops

to 55 cents when the female spouse survives. In line with our earlier work van der Vaart

et al. (2020), we report rrm > rrf implied by that men were the prime earner in the

households and pension benefits mostly accrued to them.

D.2.6 Tax Function Estimates

For general taxes, we estimate the following specification (cf. Heathcote et al., 2020):

τG(y, ·) = y − λ · y1−τ ,

which we estimate conditional upon age group (below vs. above age 65) and family

structure (married vs. single).

Table D.1 shows the estimates. Our estimates are in the ballpark of Heathcote et al.

(2020). Using data from the Congressional Budget Office, they report τ ∈ (0.089, 0.236)

for the U.S. between 2012-2016. λ is merely a level effect and thus does not have

appropriate benchmark values. For dedicated taxes for first pillar pension (τSS) and

Table D.1: Parameters of the General Income Tax Function τG

Couples Singles
Below age 65 Above age 65 Above age 65

λ 1.241 1.157 1.073
(0.005) (0.008) (0.012)

τ 0.185 0.162 0.148
(0.002) (0.005) (0.010)

No. households: 77,118 18,325 14,176
Panel-year observations: 534,006 101,067 64,571

Notes: Income measured in 0000s euros. Estimates for the group younger than 65 restricts to
households whose oldest member is younger than 65 and born after 1949. Estimates for the
group older than age 65 restricts to households whose youngest member is older than 65 and
born before 1950. Standard errors (in parentheses) are clustered at the household level.
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LTC provision (τL), we estimate the following specification:

τx(y, ·) = α0,x + α1,x − α0,x

1 + e
−
(

y−α2,x
α3,x

) , x ∈ {LTC, SS}, (D.13)

which we estimate conditional upon age group (below vs. above age 65) and family

structure (married vs. single). α1,x represents the maximum tax amount, which is

present in the Dutch system. Table D.2 shows the estimation results.

Table D.2: Parameters of the Dedicated Tax Functions τL and τSS

Couples Singles
Below age 65 Above age 65 Above age 65

Pension income (x = SS)
α0 -0.255

(0.013)
α1 0.697

(0.002)
α2 3.259

(0.041)
α3 1.566

(0.022)
LTC provision (x = LTC)
α0 -0.166 -0.060 -0.026

(0.008) (0.004) (0.005)
α1 0.447 0.378 0.303

(0.001) (0.003) (0.003)
α2 3.268 3.510 2.578

(0.004) (0.001) (0.002)
α3 1.599 0.872 0.618

(0.230) (0.021) (0.021)

No. households: 77,118 18,325 14,176
Panel-year observations: 534,006 101,067 64,571

Notes: Income measured in 0000s euros. Estimates for the group younger than 65 are restricted
to households whose oldest member is younger than 65 and born after 1949. Estimates for the
group older than 65 are restricted to households whose youngest member is older than 65 and
born before 1950. Standard errors are clustered at the household level (in parentheses).
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D.2.7 Cohort Effects to the Asset Profiles

Akin to estimating the income processes before age 65, we have to deal with cohort

effects to observed asset profiles. In the cross-section (a given year), older households

are born in an earlier year than younger households and, due to secular income growth,

have a lower labor productivity level and pension income. Because of this, asset levels

of older cohorts will likely be lower. At the same time, assets of older cohorts may be

higher because they include more former entrepreneurs, such as farmers. Computing

age profiles of assets unconditionally upon birth cohort would consist of these undesired

cohort effects.

To obtain asset profiles without cohort effects, we follow French (2005) and run

specifications (4.2a) and (4.2b) with the logarithm of assets ait as outcome:

log(ait) = log(αt,w) + θi,w + ϵit,w, (D.14a)

where i indexes a household and t is the age of the household, i.e., the age of the oldest

household member. This age ranges from 65 to 100. w is a subscript to distinguish these

parameters involving assets from those involving income in specifications (4.2a) and

(4.2b). To wash out cohort effects, we run the following OLS regression of the predicted

fixed effects on birth cohort dummies (cf. French, 2005; De Nardi et al., 2024):

θ̂i,w = θw + θc,w + θ̃i,w, c ∈ {1905, 1906, ..., 1944, 1945 − 1949}, (D.14b)

where θw is the cohort effect of birth years 1945-1949, θw + θc,w is the fixed effect for the

other cohorts, and residual θ̃i is the household-specific effect excluding a cohort effect.

To align with the income process before age 65 being tailored to households born in

1950, we take the cohort born between 1945 and 1949, as the reference group. In the

ideal econometric scenario, we have θc,w = 0 so no cohort effects. To mimic this, we
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subtract the estimated cohort effect θ̂c,w from the right-hand side of (D.14a):

log(âit) = log(α̂t,w) + θ̂i,w + ϵ̂it,w − θ̂c,w. (D.14c)

log(âit) is the predicted asset level for the household when they would be born between

1945 and 1949. To allow for distinct age patterns by marital status and lifetime income,

we run the regressions for these groups separately.

We exponentiate the assets to get the asset level that is cleaned from cohort effects.

While the regression omits zero assets, we re-include them in the ‘cleaned’ profiles;

negative assets and assets above e2,500,000 are dropped.45

Figure D.5 shows median asset profiles before and after we control for birth cohort

effects. Each separate line represents a different birth cohort, depending on the age in

2006. The left panels a. and c., i.e., the raw data, reveal that birth cohort effects are

strong, particularly for married households with high lifetime income. Those households

have more assets if they are born earlier. Furthermore, within birth cohorts, there seems

to be a strong time trend, induced by the period of financial crisis that is part of our

observational window.

Using (D.14c), a birth cohort effect is controlled for in panels b. and d.. This

reverses the differences between cohorts: the youngest cohorts hold most assets and

asset profiles of different cohorts nicely overlap. Also, year trends are less pronounced.

As a consequence, we observe households decumulating asset holdings over time. The

asset profiles in Figure 4.1 in Section 4.5, which we target, are the data from panels b.

and d. unconditional upon birth cohort.
4We drop 0.9% of the households and 2.6% of the panel-year observations because of these restrictions.
5We also tried Deaton-Paxson dummies, but identifying the effects suffers heavily from multi-

collinearity. Also, taking levels as outcome could not properly control for many zero assets in the
data.
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Figure D.5: Asset Profiles Before and After Controlling for Birth Cohort Fixed Effects
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Notes: Each line represents the asset profile conditional upon birth cohort and income quintile.
We distinguish seven birth cohorts based on the age of the household in 2006: younger than 65;
aged 65-69; aged 70-74; aged 75-79; aged 80-84; aged 85-89; and aged 90 and over.

D.3 Second-stage Estimates

D.3.1 Standard Errors of Estimated Preference Parameters

We compute standard errors of δ̂ by using a matrix D that measures the responsiveness

of each moment condition to slightly changing the parameter estimate. Specifically,

D is a k × 4 dimensional matrix where the k-th row contains the derivative of the
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k-th moment condition: ∂ (Md
k −Ms

k(χ̂,δ))
∂δ . The variance-covariance V of estimator δ̂ is

documented in De Nardi et al. (2010): V = (D′D)−1 (D′SD) (D′D)−1, where S is

the empirical variance-covariance matrix regarding the data moments. We compute D

numerically.
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Appendix E: Chapter 5
E.1 Derivation of L(D)

L(D) has a recursive pattern due to its link to the Gamma function. To reach this result,

define y =
∑J

j=1 M (tj , Xj , x̃j). Then:

L(0) (y) = L (y) =
(
σ2 · y + 1

)− 1
σ2

= (−1)0 ·
(
σ2 · y + 1

)− 1
σ2 −0 · 1

L(1) (y) = ∂L (y)
∂y

=
(

− 1
σ2 − 0

)
· σ2 ·

(
σ2 · y + 1

)− 1
σ2 −1

= −1 ·
(
σ2 · y + 1

)− 1
σ2 −1 · 1 ·

(
0σ2 + 1

)
L(2) (y) = ∂L (y)

∂y2 = −1 · −1 ·
(
σ2 · y + 1

)− 1
σ2 −2 · 1 ·

(
0σ2 + 1

)
·
(
σ2 + 1

)

L(3) (y) = ∂L (y)
∂y3 = −1 · −1 · −1 ·

(
σ2 · y + 1

)− 1
σ2 −3 · 1 ·

(
0σ2 + 1

)
·
(
σ2 + 1

)
·
(
2σ2 + 1

)
...

L(D) (y) = ∂L (y)
∂yD

= (−1)D ·
(
σ2 · y + 1

)− 1
σ2 −D ·

(D−1)+∏
q=0

(
qσ2 + 1

)
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Information Matrices

For the information matrices it is important to note that the score vectors themselves are

vectors and consist of sums over the J spells and within spell-variation. The information

matrices will contain components that are of the form:

∂l

∂β′
1∂β2

=
J∑

j=1

Sj∑
s=1

csjx1sjx′
2sj +

 J∑
j=1

Sj∑
s=1

asj

 J∑
j=1

Sj∑
s=1

bsjx1sj

 J∑
j=1

Sj∑
s=1

bsjx′
2sj

 ,

where asj , bsj and csj are scalars. We can calculate the first component, the spell-

level outer product matrices, with the routine mlmatsum. We can calculate the second

component, the group-level outer product matrices, with the routine mlmatbysum. We

obtain:
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228 Appendix E. Chapter 5

E.3 Observed Threshold Values Approaching Zero

We will show that lA and lB are asymptotically the same if the starting times of the

observed population t
(0)
j → 0 for all j ∈ {1, .., J}. This case of t0 → 0 not only involves

the possibility of no left truncation, but also truncation schemes implying that only

subjects with exclusively low thresholds are sampled. This for example happens if frailty

is shared across many spells which all have to meet a threshold t
(0)
j ; lower t

(0)
j increases

the likelihood of being sampled as a subject. Proof for lim
t0→0
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Samenvatting
Door vergrijzing zijn huishoudens steeds meer zelf verantwoordelijk voor het verzekeren

van de gezondheids- en financiële risico’s van ouderdom. Waar voorheen zelfs ruimhartige

regelingen bestonden om met vervroegd pensioen te gaan, zijn veel pensioenregelingen

nu versoberd. Bovendien neemt de generositeit van publieke langdurige zorg af door

strengere toelatingseisen voor verpleeghuiszorg en een verhoging van de eigen financiële

bijdrage. De hervormingen van langdurige zorg zijn bedoeld om ouderen met een

zorgbehoefte langer thuis te laten wonen en om het gebruik van mantelzorg te stimuleren.

Hierdoor zijn huishoudens meer genoodzaakt om zelf geld opzij te zetten voor hun oude

dag en om deze particulier te verzekeren.

Adequate pensioenen en langdurige zorg vereisen goed inzicht in de verschillen in

gezondheidsrisico’s tussen huishoudens. Mensen met een lagere sociaal-economische

status zijn gemiddeld minder gezond en hebben een kortere levensverwachting. Daarnaast

variëren zorgbehoeften en de beschikbaarheid van mantelzorg tussen huishoudens. Er

vindt dus herverdeling van (publieke) middelen plaats, omdat huishoudens verschillen in

de duur van hun pensioenuitkering en in het gebruik van langdurige zorg. Bovendien keert

een particulier pensioen of een verzekering tegen langdurig zorggebruik langer uit aan

bepaalde groepen huishoudens, wat kan leiden tot inefficiënties op de verzekeringsmarkt.

In dit proefschrift onderzoeken wij de verschillen in langdurig zorggebruik en sterfte,

en de impact ervan op publieke en particuliere verzekeringen.

Hoofdstuk 2: De Determinanten van Langdurige Zorgpaden: Bewijs op basis

van Nederlandse Administratieve Gegevens

Dit hoofdstuk bestudeert de invloed van zorgbehoefte, mantelzorg en financiële middelen

op de duur van zorgtypen en de overgangen tussen zorgtypen (thuis- of verpleeghuiszorg).

Wij gebruiken een overgangsmodel dat wij toepassen op unieke Nederlandse data van het
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Centraal Bureau voor de Statistiek over de duur van zorggebruik. De data rapporteert

thuis- en verpleeghuisgebruik, en familie- en individuele karakteristieken op (bijna)

continue basis. Het model en de data gebruiken wij ook in Hoofdstukken 3 en 4.

Als wij mensen met een fysieke of cognitieve aandoening met elkaar vergelijken, zien

wij dat mensen met een fysieke aandoening korter thuis- en verpleeghuiszorg gebruiken

en dat zorggebruik vaker tijdelijk is. Daarnaast vinden wij dat mantelzorg de overgang

van thuiszorg naar verpleeghuiszorg remt voor mensen met een fysieke aandoening,

maar niet voor mensen met een cognitieve aandoening. Hervormingen die inzetten op

het gebruik van mantelzorg dienen dus rekening te houden met de aandoening van de

zorgvrager. Daarnaast zien wij dat het hebben van meer financiële middelen en een

eigen woning (zwaardere) verpleeghuiszorg uitstelt en lichter zorggebruik bespoedigt.

Dit wijst op een mogelijke vraag naar particuliere langdurige zorg.

Hoofdstuk 3: Ouderdomsverzekeringen Bundelen Vanwege Sociaal-economische

Verschillen in Langdurig Zorggebruik en Sterfte

Vervolgens bestuderen wij averechtse selectie die ontstaat door verschillen in langdurig

zorggebruik en sterfte. Averechtse selectie leidt tot een inefficiënt hoge premie en laag

aantal verzekerden op de verzekeringsmarkt: alleen mensen met een hogere levensver-

wachting kopen een pensioenverzekering, en alleen mensen met een hogere verwachte

zorgbehoefte verzekeren langdurig zorggebruik. Productbundeling kan averechtse se-

lectieproblemen dempen wanneer de risico’s negatief gecorreleerd zijn: langlevenden

gebruiken weinig zorg en kortlevenden gebruiken veel zorg, waardoor de totale uitkering

in evenwicht is. Wij rapporteren negatieve correlaties voor sociaal-economische groepen.

Wij tonen echter aan dat alléén een negatieve correlatie niet volstaat om averechtse

selectie te minimaliseren met productbundeling: het gemiddelde en de spreiding van

levensverwachting en langdurig zorggebruik zijn ook van belang. Wij berekenen deze

factoren vervolgens op basis van de administratieve data en vinden dat averechtse selectie

niet ongedaan gemaakt kan worden door een gebundelde verzekering met uniforme premie.

Onze bevindingen tonen het belang van groep-specifieke premies aan.
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Hoofdstuk 4: Gezondheidsongelijkheid en de Progressiviteit van Ouderdoms-

volksverzekeringen

Hoofdstuk 4 focust op publieke verzekeringen en bestudeert in hoeverre sociaal-

economische verschillen in langdurige zorg en sterfte de welvaartsverdeling in Nederland

beïnvloeden. Mensen met de hoogste sociaal-economische status verblijven gemiddeld

korter in een verpleeghuis en leven langer dan mensen met de laagste sociaal-economische

status. Zij betalen dus korter een eigen bijdrage voor zorg, maar ontvangen tegelijkertijd

langer pensioen. Uit ons welvaartsmodel blijkt dat zij hierdoor 23.4% meer kunnen

consumeren dan degenen met de laagste sociaal-economische status. Een groot deel van

deze welvaartswinst wordt verklaard door het nalaten van grotere erfenissen.

Hoofdstuk 5: Schatting van Links Afgekapte Duurmodellen met Gedeelde

Niet-Geobserveerde Heterogeniteit (‘Left-Truncated Shared Frailty Models’)

Hoofdstuk 5 behandelt het gebruikte duurmodel en de schatting daarvan. De uitkomst-

variabele is de duur tot het einde van een toestand. De modelspecificatie bevat een

niet-geobserveerd effect die hetzelfde is binnen een groep (frailty). Wij breiden het

model uit met links afgekapte duren (left truncation): de steekproef bevat alleen duren

die een drempelwaarde overschrijden. De steekproef is hierdoor een dynamische selectie

van relatief lange toestandsduren. Wij ontwikkelen een zuivere schattingsmethode die

corrigeert voor de selecte steekproef. Daaropvolgende simulaties laten zien dat geschatte

duur- en covariaateffecten onzuiver zijn wanneer de dynamische selectie wordt genegeerd.

De onzuiverheid neemt echter af als het niet-geobserveerde effect wordt gedeeld binnen

een grotere groep. Wij passen onze zuivere schattingsmethode toe in Hoofdstukken 2

tot en met 4.


	P20240701_PhD001_VdVaart
	Complete_thesis_JV_

